
Second Supplement to Chapter 7 of Sutherland,

Introduction to Metric and Topological Spaces (Second Edition)

Exercise 7.1 in Sutherland asks for an enumeration of the different topologies on the standard
sets {0, 1} and {0, 1, 2} with two and three elements respectively, and the solution to the problem
described on page 2 of the online file

http://fdslive.oup.com/www.oup.com/booksites/pdf/uk/companion/9780199563081/S.7.pdf

shows that the numbers of topologies are 4 for {0, 1} and 29 for {0, 1, 2}. However, in
some respects there are redundancies in these enumerations; for example, the two Sierpiński Space
topologies on X = {0, 1} given by

S0 =
{

∅, {0}, X
}

, S1 =
{

∅, {1}, X
}

are essentially the same, the only difference being that the roles of 0 and 1 are interchanged.
Formally, we can summarize this relationship by stating that if σ is the permutation of X = {0, 1}
which interchanges 0 and 1, then the mapping

σ : (X, S0) −→ (X, S1)

is a homeomorphism. We can generalize this as follows:

Definition. Let X = {0, · · · , n − 1} be a standard set with n elements, let T be a topology
on X, and suppose that σ is a permutation of X. Define σ∗T to be the family of all subsets of X

which have the form σ[V ] where V ∈ T. — Before proceeding to the main definition, we shall give
a few simple properties of this construction:

LEMMA. (a) If σ is the identity permutaton, then σ∗T = T. Furthermore, if σ and τ are two

permutations, then σ∗ (τ∗T) = (σ oτ)∗T.

(b) The map σ defines a homeomorphism from (X,T) to (X,σ∗T).

Examples. Even if σ is not the identity, then T and σ∗T might still be equal. For example, if
T is either the discrete or indiscrete topology, then we can check directly that σ∗T = T.

Proof. (a) We first prove that σ∗T = T if σ is the identity. If V ∈ T then σ[V ] = V implies that
V ∈ σ∗T, and conversely if W ∈ σ∗T then W = σ[V ] for some V ∈ T, and since σ is the identity
we have σ[V ] = V , so that W = V ∈ T. Therefore we have shown that each of T amd V ∈ σ∗T is
contained in the other.

The identity σ∗ (τ∗T) = (σ oτ)∗T follows directly from the identity σ oτ [V ] = σ∗ [ τ∗[V ] ].

(b) The mapping σ is 1–1 onto because it is a permutatoin, so we need to verify that σ is both
continuous and open when viewed as a map from (X,T) to (X,σ∗T).

To see that σ is open, note that if V is open with respect to T then σ[V ] is open with respect
to σ∗T). To see that σ is continuous, start with a subset W which is open with respect to σ∗T).
By the definition of the latter, we know that W = σ[V ] where V is open with respect to T. Since
σ is 1–1 onto, it follows that the inverse image σ−1[W ] is equal to V , and since the latter is open
it follows that σ is also continuous. Combining the observations of this paragraph, we see that σ is
a homeomorphism from (X,T) to (X,σ∗T).
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Definition. Given X as above and two topologies T and T
′ on X (which may coincide), write

T ∼ T
′ if and only if T

′ = σ∗T. The first part of the lemma implies that this relation is reflexive
and transitive, and the relation is symmetric because T

′ = σ∗T implies T = τ∗T
′ where τ = σ−1.

The equivalence classes of topologies on X with respect to this relation are called homeomor-

phism types (or topological types) with underlying set X. In these terms, we are interested in
the following question:

If X = {0, · · · , n− 1} is the standard set with n elements, describe the homeomorphism

types of topological spaces with underlying set X.

If n = 1 then there is only one topology (which is both a discrete and an indiscrete topology!), so
there is a unique homeomorphism type. If n = 2, then as noted above, the solution to Exercise
7.1(a) in Sutherland implies that there are 4 topologies and they lie in 3 equivalence
classes (the classes of the discrete, indiscrete and Sierpiński topologies).

Homeomorphism types for X = {0, 1, 2}

Our main objective in this document is to determine the number of distinct homeomorphism types
when n = 2; by the solution to 7.1(b) in Sutherland there are 29 topologies, and we need to describe
the various equivalence classes.

One way of sorting topologies on the finite set X = {0, · · · , n − 1} is to consider the number
Nk(T) of subsets U in the topology T such that U contains exactly k points, where 1 ≤ k ≤ n − 1
(we know that N0 = Nn = 1 by the definition of a topological structure). It follows immediately
that if T ∼ T

′ then for each k we have Nk(T) = Nk(T′), so the sequence of integers Nk provide
one simple way to begin the study of homeomorphism types of topologies on X.

The following observations will be extremely helpful in analyzing homeomorphism types:

DUALITY PRINCIPLE. If X = {0, · · · , n− 1} and T is a topology on X, then the set T
∗ of

all complements of subsets in T is also a topology on X.

This follows because T
∗ contains ∅ = X − X and X = X − ∅, and the usual DeMorgan laws

relating union, intersection and complementation

(X − A) ∪ (X − B) = X − (A ∩ B) , (X − A) ∩ (X − B) = X − (A ∪ B)

show that T
∗ is closed under taking unions and intersections (since X is finite, there are only finitely

many subsets in a topology for X, so every intersection is actually a finite intersection).

COROLLARY 1. In the setting of the Duality Principle, suppose that a is a nonnegative

integer and 1 ≤ j ≤ n − 1. Then the number of topologies on X with Nj = a is equal to the

number of topologies on X with Nn−j = a, and likewise for the number of homeomorphism types

of topologies.

Note that for some choices of n and a the number of homeomorphism types will be trivial; for
example, this is true if

a >

(

n

j

)

.

Proof. If T is a topology on X then by definition we have Nj(T
∗) = Nn−j(T) because the sets

in T
∗ are complements of the sets in T. Since T

∗∗ = T, every topology T is complementry to some
unique topology U, and hence for each topology with Nj(T) = a there is a uniquely associated
topology U with Nn−j(U) = a. This proves the first part of the conclusion.
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To prove the statement about homeomorphism types, note that if U is complementary to T

and σ is a permutation of X, then σ∗U is complementary to σ∗T, and hence the complementary
topology construction sends equivalent topologies (with respect to the relation ∼) into equivalent
topologies. Therefore complementation sends an equivalence class of topologies into an equivalence
class of topologies.

COROLLARY 2. In the setting of the preceding result, suppose that we are given a sequence

of nonnegative integers a1, · · · , an−1. Then the number of topologies on X with Nj = aj for all j

such that 1 ≤ j ≤ n − 1 is equal to the number of topologies on X with Nj = an−j for all j such

that 1 ≤ j ≤ n − 1, and likewise for the number of homeomorphism types of topologies.

Proof. This is just a compound version of the preceding corollary, with one hypothesis and one
conclusion for each j such that 1 ≤ j ≤ n − 1.

If we specialize to the case n = 3, then the approach of the preceding paragraph indicates
that we should split the analysis of topological structures into cases depending upon the pair of
integers N1 and N2, which is essentially the approach in the online document cited above. Since
n = 3, we must have 0 ≤ N1, N2 ≤ 3, but not all pairs (N1, N2) of this type can be realized; for
example, (N1, N2) = (3, 0) is impossible because if there are three subsets with one element, then
the conditions for a topology imply that there must also be three subsets with two elements (take
the union of two subsets which contain exactly one point). The Duality Principle and its corollaries
essentially cut the amount of work needed to analyze these cases in half, for they imply that if
we can find the number of homeomorphisms types with a given (N1, N2) where N1 ≥ N2, then we
can retrieve the numbers with a given (N1, N2) where N1 ≤ N2 because the numbers of types with
(N1, N2) = (p, q) and (N1, N2) = (q, p) are equal.

We are now ready to look at the various cases.

Cases (N1, N2) = (3, k), where 0 ≤ k ≤ 3. There is only one topology; namely the discrete
topology for which N2 = 3. To see that N2 < 3 is impossible, note that if N1 = 3 then a topology
T must contain every one point set, and since T is closed under unions it must also contain every
other set.

Case (N1, N2) = (0, 0). In this case the only possible topology is the indiscrete topology.

Case (N1, N2) = (1, 0). If {p} is the unique open subset in the topology containing one
element, then there is a permutation sending the original topology into one for which {0} is the
unique open subset. In this case there is only one open subset aside from ∅ and X, so there is
only one homeomorphism class of topologies in this case, and there are three topologies in this
homeomorphism class.

Case (N1, N2) = (1, 1). As in the preceding case, the original topology is equivalent to
one for which {0} is the unique open subset with one element, so we have reduced this case to
considering homeomorphism types of topologies such that {0} is the unique open subset with one
element. There are three possibilities for the unique open subset with two elements, and one can
check that each of the possibilities {0, 1}, {0, 2} and {1, 2} can be realized as the unique two point
subset for some topology. The first two topologies define the same homeomorphism type because
the permutation σ which interchanges 1 and 2 will send one to the other.

On the other hand, the third topology is not in the same homeomorphism class. — To see this,
first observe that if σ sends the third topology to either of the others, then since {0} is the unique
subset with one element we must have σ(0) = 0, which means that either σ is the identity or else
σ interchanges 1 and 2. But σ sends the third topology to itself, and therefore it follows that the
third topology cannot lie in the same homeomorphism class as the other two. To summarize, there
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are two homeomorphism classes of topologies in this case; the class in this paragraph consists of
three topologies, and the class in the preceding paragraph consists of six topologies.

Case (N1, N2) = (2, 0). This case is impossible, for if the topology contains two one point
subsets then it contains their union, which must be a two point subset.

Case (N1, N2) = (2, 1). As before, the original topology has the same homeomorphism
type as a topology whose one point open subsets are {0} and {1}, so we may reduce everything
to finding the homeomorphism types of topologies for which these are the one point subsets. As
in the preceding discussion, we know that {0, 1} is open, and hence this must be the unique open
subset with exactly two points. Therefore there is only one homeomorphism class of topologies in
this case, and there are three topologies in this homeomorphism class.

Case (N1, N2) = (2, 2). Once again, we may reduce everything to finding the homeomor-
phism types of topologies for which the one point open subsets are {0} and {1}. As in the preceding
case, one of the two point open subsets must be {0, 1}, and hence the other such set must be either
{0, 2} or {1, 2}. One can check that each of these families is a topology for X, and the permutation
σ with interchanges 0 and 1 sends each into the other. Therefore there is only one homeomorphism
class of topologies in this case, and there are six topologies in this homeomorphism class.

By the consequences of the Duality Principle, the preceding yields the numbers of homeomor-
phism types, and we can summarize everything in the following 4× 4 matrix in which cp,q denotes
the number of homeomorphism types such that (N1, N2) = (p, q), where 0 ≤ p, q ≤ 3:







1 1 0 0
1 2 1 0
0 1 1 0
0 0 0 1







If we add up the entries of this matrix, we see that there are 9 homeomorphism types of
topologies on X = {0, 1, 2}.

For purposes of comparison, here is the corresponding matrix whose entries are the numbers
of topologies such that (N1, N2) = (p, q):







1 3 0 0
3 9 3 0
0 3 6 0
0 0 0 1







Notice that if we add the entries in this matrix, the sum is 29, which is the number of distinct
topologies on X.
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