
Supplement to Chapter 8 of Sutherland, 
 

Introduction to Metric and Topological Spaces (Second Edition) 

 
The middle section of this chapter (Homeomorphisms, pp. 84 – 85) describes the condition for 
mathematical equivalence of topological spaces.  One formulation  of this condition is that there 

is a 1 – 1 correspondence between the two spaces — say  X  and X′  — such that a subset  U  

of  X  is open (in  X) if and only if the corresponding set of points  U′  of  Y  is open (in  X′).  The 

material in this document explains the relation between this concept and the colloquial phrase  
 

Topology is rubber sheet geometry 
 

which often appears in popularizations of the subject.   

 
Homeomorphisms and equivalence of topological spaces 

 
Since the concept of equivalence in the preceding paragraph clearly differs from the standard 
definition of homeomorphism in topology, we shall first prove that these notions are equivalent. 
 

PROPOSITION.    Let  X  and  Y  be topological spaces, let  f: X  →→→→  Y  be a   1 – 1 

correspondence of the underlying sets, and let  g  be its inverse function.  Then the following 
are equivalent: 
 

1. For each subset  U  of  X,  U  is open in  X  if and only if  f [ U ] is open in  Y.  
 

2. Both  f  and its inverse function  g  are continuous. 
 

Proof.    The first statement implies the second.   We can split the first statement into two parts; 

namely, if  U  is open in  X  then  f [ U ] is open in  Y, and if  V  is open in  Y  then  g [ V ]  is open 
in  X.  The first part is equivalent to the continuity of  g,  and the second is equivalent to the 
continuity of  f. 
 

The second statement implies the first.   This follows from essentially the same considerations:  
If  V  is an open subset of  Y, then  f  is continuous if and only if the inverse image of  V  in  X is 

open, and this inverse image is equal to g [ V ].  Likewise, if  U  is an open subset of  X, then  g  
is continuous if and only if the inverse image of  U  in  Y is open, and this inverse image is equal 

to  f [ U ].����   

 
Congruence, similarity and metric spaces 

 
The first step in relating homeomorphisms to “rubber sheet geometry” is to explain why some 
standard geometric transformations are examples of homeomorphisms.   
 

Probably the most straightforward concept of equivalence for geometric objects in Euclidean 
space is the notion of congruence.   If two geometric figures  A  and  B  (formally, subsets) in 

Euclidean space are congruent, then there is a  1 – 1 correspondence  f : A  →→→→  B  such that for 

all points  x  and  y  in  A  we have the distance identity  d2(x, y)  =  d2( f (x), f (y) ) , where d2 is 

the Euclidean distance defined on pages 40 – 41 of Sutherland.   



 
Another fundamental notion for equivalence for geometric figures is similarity; if two geometric 

figures  A  and  B  are similar, then there is a  1 – 1 correspondence  f : A  →→→→  B  and a positive 

constant  c  such that for all points  x  and  y  in  A  we have the distance identity  d2( f (x), f (y) )  
=  c · d2(x, y) .  The constant  c  is called the ratio of similitude; by the preceding discussion, 
congruent figures are similar such that the ratio of similitude is  1. 
 

These notions generalize directly to metric spaces, in which a similarity  transformation from 

one (subset of a) metric space  A  to another (subset of a) metric space  B  is a  1 – 1 

correspondence  f : A  →→→→  B  such that for all points  x  and  y  in  A  we have the distance 

identity  dB( f (x), f (y) )  =  c · dA(x, y) for some positive constant  c, and an isometry is a defined 

to be a similarity transformation for which  c  =  1.    We note that the spaces  A  and  B  may be 
the same.  Further information on the logical relationship(s) between the standard geometric 
concept of congruence and the purely metric notion of isometry appears in the following online 
document: 

 

http://math.ucr.edu/~res/math133/metgeom.pdf 
 

The following result shows that similarity transformations are examples of homeomorphisms. 
 

PROPOSITION.   If  f : A  →→→→  B  is a similarity transformation, then  f  is a homeomorphism. 
 

The proof will actually establish a stronger result; namely, both  f  and its inverse function  g  are 
uniformly continuous (see page 135 of Sutherland).   
 

Proof.   Let  c  be the ratio of similitude for  f .  Then for all  a  in  A  and all  εεεε  >  0  we know 

that  dA(x, a)  <  εεεε/c  implies  
 

dB ( f (x), f (a) )   =   c · dA (x, a)   <   c · (εεεε/c )   =   εεεε 
 

so that  f  is continuous at  a  for all  a  in  A  (and in fact  f  is uniformly continuous). 
 

Now let  g  be the inverse function to  f ;  since  f  is a   1 – 1 correspondence it follows that  
 

dB ( g (u), g (v) )  =  c 
–

 
1

 · dA (u, v) 
 

for all  u  and v  in B, which means that the inverse function  g  is a similarity transformation with 
ratio of similitude  c 

–
 
1
.   Therefore  g  is (uniformly) continuous by the reasoning of the 

preceding paragraph.���� 

 
Affine transformations 

 
Frequently it is useful to consider relationships between geometric figures that are less 
restrictive than congruence or similarity.  One example is affine equivalence:   Two subsets  A  

and  B  of  RRRR
n
  are affine equivalent if there is a mapping from  RRRR

n
  to itself of the form  

 

F(p)   =   T(p) + k 
 

where  T  is an invertible linear transformation of  RRRR
n
  and  k  is some vector in  RRRR

n
, such that  F  

maps  A  onto  B; composite mappings of this sort are called affine transformations.   Results 
from  http://math.ucr.edu/~res/math133/metgeom.pdf  imply that congruent or similar figures are 



affine equivalent (see the results stated on pages 1, 3 and 12, and the comments at the top of 
the latter page).   
 

Many basic results in elementary geometry involve conditions under which geometrical figures 
are congruent or similar, and it is not difficult to state results of this type for affine equivalence.  
For our purposes it seems more useful to discuss congruence, similarity and affine equivalence 
for a simple but important class of objects. 
 

EXAMPLE.    If  p  and  q  are real numbers such that  0  <  q  ≤  p, let  A(p, q)  denote the solid 

rectangular region  [0, p] × [0, q]  in the coordinate plane  RRRR
2
.  For these examples it is fairly 

simple exercise to prove the following: 
 

1. For all  (p, q)   and  (r, s)  as above,  A(p, q)  is congruent to  A(r, s)  if and only if  (p, q)  
and    (r, s)  are equal. 

 

2. For all  (p, q)   and  (r, s)  as above,  A(p, q)  is similar to  A(r, s)  if and only if  p/r   and    

q/s  are equal (equivalently, if and only if  p/q   =    r/s). 
 

3. For  all   (p, q)   and  (r, s)  as above,  A(p, q)  is affine equivalent to  A(r, s). 
 

A detailed verification is given in Appendix A. 
 
Here is a slightly less elementary example, which is in part motivated by considerations from 
multivariable calculus. 
 

Shear transformation.  The solid parallelogram – shaped region  B  defined by the equations  

0  ≤  y  ≤  2  and  y  ≤  x  ≤  y + 2  is affine equivalent to the solid rectangle  A  =  [0,2] × [0,2], 

where the affine transformation  F : A  →→→→  B  is defined by  F(s, t )  =  (s + t , t ).    
 

 
 

In multiple integration this affine equivalence is sometimes useful because the mapping  F  and 
the standard Change of Variables formula for double integrals reduce the computation of an 
integral over  B  to the computation of an integral over the rectangular region  A.    

 
More general transformations 

 
Of course, there are also many other transformations that are useful in multivariable calculus.  

For example, the polar coordinate mapping  (x, y)  =  (r cos θθθθ, r sin θθθθ)  =  PPPP (r, θθθθ)  provides the 

standard method for reducing the computation of a double integral over the spiral – shaped 

region defined by the inequalities  θθθθ + ½  ≤  r  ≤  θθθθ + 1  and  0  ≤  θθθθ  ≤  8 ππππ  (see the drawing 

below) to the computation of a double integral over  [½, 1] × [0, 8ππππ]; in particular, this reduction 



can be applied to show that the area of the spiral region is equal to  11ππππ2
 + 3ππππ.   Appendix B 

contains a proof that the polar coordinate transformation defines a homeomorphism from this 
rectangular region onto the given spiral region. 
 

 
 

(Adapted from 
http://2.bp.blogspot.com/-IAXyyMXIU2g/TbphOaKwbXI/AAAAAAAAAEw/zifLpCucuYg/s1600/spiral1.gif ) 

 

The preceding examples suggest that homeomorphisms are general, abstract versions of 
transformations related to classical geometry and the standard change of variables 
mappings in multivariable calculus. 

 
Geometric properties of homeomorphisms 

 
In applications of the Change of Variables Theorem for multiple integrals to specific examples, it 
is usually necessary to get some geometric insight into the behavior of the transformation 
defining the change of variables.  More generally, one major theme in topology is to provide 
qualitative information about homeomorphisms.  The following quotation summarizes some of 
the most important general statements on this problem: 
 

In topology, the movements we are allowed [homeomorphisms] might be called elastic 
motions [emphasis added].  We imagine that our figures are made of perfectly elastic 
rubber and, in moving a figure, we can stretch [or compress], twist, pull and bend it at 

pleasure.  … However, we must be careful that distinct points in a figure remain distinct; 
we are not allowed to force two [or more] different points to coalesce into just one point. 

 

B. H. Arnold, Intuitive Concepts in Elementary Topology (Reprint of the 1962 Edition; 

Dover Publications, Mineola, NY, 2011), pp. 23 – 24. 
 

In the planar case, the stretching, shrinking, bending and twisting operations can be carried out 
by manipulating an ideally elastic rubber sheet, and this is why  topology is sometimes known 
as rubber sheet geometry. 
 

There are numerous interactive software applications which allow a user to experiment fairly 
easily with stretching, shrinking and bending figures.  The images below give two results of such 
operations on the figure at the left; Appendix C contains specific information on the software 
used here. 
 

 



 

In order to justify this rigorously, it is necessary to describe a homeomorphism mapping the set 
on the left to one of the sets on the right in explicit analytic terms.  For the given examples, the 
computer program and user input can be analyzed to obtain very accurate numerical 
information on the behavior of the homeomorphism which seems to exist.  However, for 
theoretical purposes we need a complete, explicit description of a homeomorphism in 
terms of analytic formulas.  We shall illustrate this process with a nontrivial example that is 
fairly simple intuitively and can also be described by relatively simple formulas. 
 

The drawings below are meant to suggest there is a homeomorphism of the solid square region  
X  =  [– 1, 1] × [– 1, 1]  with the following geometric properties:  
 

1. The center point  (0, 0)  is mapped to some point (a, 0)  with  0  <  a  <  1. 
 

2. Each boundary point is sent to itself (the restriction to the boundary is inclusion). 
 

3. The  t – axis is sent to the broken line with two segments, one joining  (0, – 1)  to  (a, 0)  
and the other joining  (a, 0)  to  (0, 1); in the right hand square, this image is the blue 
broken line.  
 

4. The square regions formed by intersecting  X  with the four closed quadrants are 
mapped to trapezoids as indicated, such that the horizontal slices  t  =  c  in the square 
regions on the left are sent to the horizontal slices  t  =  c  in the trapezoidal regions on 
the right by linear mappings. 

 

 
 

The given conditions indicate that map bends the  t – axis is bent in the middle, it stretches the 
two subregions to the left of that axis, and it shrinks the two subregions to the right of that axis.  

An explicit equation for the image of the  t – axis is  s  =  a – a · | t |, and using this it is fairly 
straightforward to derive the following explicit formula for the mapping under consideration: 

 

F(s, t)   =   ( a – a · | t | + s (1 – a + a · | t |), t )          if   s  ≥  0 
 

F(s, t)   =   ( a – a · | t | + s (1 + a – a · | t |), t )          if   s  ≤  0 
 

One can check directly that both formulas yield the same value on the set of points where both  
s  ≥  0  and  s  ≤  0   (so that  s  =  0).  In order to complete the discussion, we now need to 
prove rigorously that this map is a homeomorphism, and it will suffice to define a function which 
can be checked to be an inverse to  F.  We can find this function by solving  (x, y)  =   F(s, t)  for  
s  and  t  in terms of  x  and  y as follows:   First of all, in each case we have  t  =  y.   This 

reduces everything to solving the equation  x  =  a – a · | y | + s (1 – a + a · | y |) for  s  when  x  ≥  

a – a · | y |  and  solving the equation  x  =   a – a · | y | + s (1 + a – a · | y |)  when  x  ≤  a – a · | y |.  
Since  0  <  a  <  1  and  | y |  ≤  1  the coefficients of  s  in these equations satisfy  

 

0  <  1 – a + a · | y |  <  1  <  1 + a – a · | y | 
 

and hence they can be solved uniquely for  s  in terms of  x  and  y.   Finally, each of the 

formulas yields the same value for  s  in the overlapping case where  x  =  a – a · | y |, so the 

inverse mapping is in fact well – defined. 



  
In conclusion, two side issues 

 
Homeomorphisms and motions.  As noted on pages 111 – 112 of the previously cited book 
by Arnold, there is a significant drawback with the informal description of homeomorphisms as 
elastic motions. 

 

Unfortunately, the term “elastic motion” carries with it some … intuitive connotations.   
Chief among these … is the idea that “motion” from one place to another necessarily 
entails some sort of path, or route, along which this motion takes place.  …  No path, 

or route, is needed for a transformation [given by a homeomorphism]. 
 

One way of formalizing the concept of motion is to consider a family of homeomorphisms which 
varies over time, and this can be done by adding a real variable corresponding to time.  For 
example, we can define a motion (or deformation) of a subset  A  in a topological space  X  to 
be a continuous function  M  from  A ×  [0, 1]  to  X  such that  M (a, 0)  =  a   and for each  z  in  

[0, 1]  the restricted mapping  M z (a)  =  M (a, t)  sends the subset  A  homeomorphically onto its 

image  M z [A].  If  X  is a metric space, we can also define a more restrictive concept of rigid 

motion in which we insist that each of the mappings  M z  be distance preserving.   
 

The homeomorphisms described on the preceding page can be extended to motions very 

easily; all we need to do is replace  a  by  b z  =  (1 – z) a, where  z  lies in  [0, 1].  If  z  =  0  then 
we obtain the identity map, and if  z  =  1 we recover the original homeomorphism.  
 

It is important to know that not every homeomorphism of a topological space  X  to itself can be 

extended to a motion in the sense described above.  For example, let  X  =  RRRR  and consider the 

homeomorphism  S  sending  x  to  – x.   Suppose that there is some motion  M  as above such 

that  M 1  =  S.  Consider now the continuous function  g( t )  =  M (1, t) –  M ( – 1, t).  By our 

hypotheses we know that  g( 0 )  =  2  and  g( 1 )  =  – 2.  Therefore the Intermediate Value 
Theorem implies that  g(c)  =  0 for some  c  between  0  and   1, which means that  M (1, c)  =  

M ( – 1, c), contradicting our assumption that  M c  was 1 – 1.  This contradiction implies that no 
motion with the given properties can exist. 
 

Final remark.  Popular descriptions of topology often include whimsical statements about a 
doughnut and coffee cup being topologically equivalent; the underlying idea is that a sufficiently 
pliable doughnut can be reshaped to the form of a coffee cup by creating a dimple in the latter 
and progressively enlarging it, while shrinking the hole into a handle.  Here is a link to an 
animation which illustrates this point particularly well:  
 

http://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif 

 
Ambiently homeomorphic subsets.    If two geometrical figures  A  and  B  in  RRRR

n
  are affine 

equivalent via some affine transformation  F (in particular, if they are congruent or similar), then  

F  is a homeomorphism from  RRRR
n
  to itself which sends  A  to  B.  More generally, we shall say 

that  two subsets  A  and  B  of a topological space  X  are ambiently homeomorphic 
subspaces if there is a homeomorphism  F  from  X  to itself such that F[A]  =  B.  It follows 

immediately that if  A  and  B  are ambiently homeomorphic, then the map  h : A →→→→ B defined 

by  h ( a )  =  F ( a )  defines a homeomorphism from  A  to  B; in fact, the inverse function to  h  is 
given by the inverse function to  F. 
 



In general, the converse to the preceding statement is false; homeomorphic subsets of a space 

are not necessarily ambiently homeomorphic.  For example, let  X  =  RRRR  and set  A  and  B  

equal to  RRRR – {0}  and  RRRR – [0, 1]  respectively.  Equivalently,  A  is the union of the disjoint 

intervals  (–    ∞∞∞∞, 0)  and  (0, +    ∞∞∞∞)  while  B  is the union of the disjoint intervals  (–    ∞∞∞∞, – 1)  and  

(1, +    ∞∞∞∞).   An explicit homeomorphism from  A  to  B  is given by  g ( x )  =  x + sgn ( x ), where  

sgn ( x )  is  1  if  x  is positive and  – 1  if  x  is negative; the inverse function is  y – sgn ( y ). 
 

 
 

(The complementary subspaces are in red.) 
 

Now if  F  were a homeomorphism from  RRRR  to itself sending  A  to  B, then  F  would also map 

the complement of  A  to the complement of  B  in a 1 – 1 manner.  But these respective 
complements are  {0}  and  [0, 1]  respectively; since the first complement is finite and the 

second is infinite, there is no 1 – 1 correspondence between them, and thus by reductio ad 
absurdum it follows that a homeomorphism with the desired properties cannot exist. 
 

Here is one fundamental, and extensively studied, problem in topology which involves ambient 

homeomorphisms:  Given two regular smooth simple closed curves in RRRR
3
, when are they 

ambiently homeomorphic?  One of the simplest cases in which they are not ambiently 
homeomorphic involves a standardly embedded (planar) circle and the following curve, which is 
essentially obtained by cutting a circle at some point, tying a knot, and gluing the two cut ends 
back together again; the particular example shown below is called a trefoil (TREFF – foil) knot, 
and the blue spot is meant to suggest the point at which one cuts the curve and glues it back 
together.   

 
 

(Source: http://chesterfieldpagans.files.wordpress.com/2010/06/trefoil.png?w=500) 
 

A proof of the assertion about the circle and the trefoil knot is beyond the scope of this course, 
but here is a detailed introductory reference, which is written at the advanced undergraduate 
level: 
 

R. H. Crowell and R. H. Fox.  Introduction to Knot Theory (Reprint of the 1963 
Edition).  Dover Publications, Mineola, NY, 2008. 

 
Appendix A:  Congruence, similarity and affinity for rectangles 

 
We shall now prove the proposition on page 3, which gives the conditions under which two 
standard rectangular regions A(p, q)  and  A(r, s)  are congruent, similar or affine equivalent.  
For the purposes of this document, two planar figures are congruent if and only if there is an 

isometry from one onto the other (see  http://math.ucr.edu/~res/math133/metgeom.pdf  for further 
information; in particular, the proposition on page 3 implies that isometries and similarities of  



RRRR
n 

 preserve angle measurements, and as noted on pages 2 – 3 of this document every 

isometry or symmetry of geometric figures in  RRRR
n
  extends to an isometry or symmetry on all of  

RRRR
n) .   The results of the online document also show that every isometry of  RRRR

n
  has the form  

F(p)   =   T(p) + k  where  T  is an invertible linear isometry of  RRRR
n
  and  k  is some vector in  

RRRR
n
;  likewise, a similarity transformation on RRRR

n
  has the form  F(p)   =   c T(p) + k  where  c  is a 

positive constant,  T  is an invertible linear isometry of  RRRR
n
  and  k  is some vector in  RRRR

n
.  In 

particular, these results imply that congruent or similar figures in  RRRR
n
  are affine equivalent as 

defined earlier in this document.   
 

For the sake of clarity we shall repeat the statements we want to prove .  Recall that if  u  and  v  
are real numbers such that  0  <  v  ≤  u, then the solid rectangular region  [0, p] × [0, q]  in the 

coordinate plane  RRRR
2
  is denoted by A(u, v).   

 

1. For all  (p, q)   and  (r, s)  as above,  A(p, q)  is congruent to  A(r, s)  if and only if  (p, q)  
and    (r, s)  are equal. 

 

2. For all  (p, q)   and  (r, s)  as above,  A(p, q)  is similar to  A(r, s)  if and only if  p/r   and    

q/s  are equal (equivalently, if and only if   r/p   =    s/q). 
 

3. For  all   (p, q)   and  (r, s)  as above,  A(p, q)  is affine equivalent to  A(r, s). 
 

We shall begin by verifying the “only if ” parts of the three statements.   For the first statement, 
there is nothing to prove because the condition implies that  A(p, q)   =    A(r, s).   For the 

second statement, let   c  =   r/p   =    s/q;  in this case the invertible linear transformation  
T(p)  =  c p  maps  A(p, q)  onto  A(r, s).   Finally, for the third statement the invertible linear 

transformation  T(x, y)  =  (r x/p, s y/q)  maps  A(p, q)  onto  A(r, s).   
 

To complete the discussion, we need to prove the “if ” parts of the three statements.   For the 
third statement, there is nothing to prove because the conclusion places no restrictions on the 

pairs  (p, q)  and   (r, s).   In the first two cases, we know that there is a  1 – 1 correspondence  

f : A(p, q)  →→→→  A(r, s)  such that for all points  x  and  y  in  A(p, q)  we have the distance 

identity  d2 ( f (x), f (y) )  =  c · d2 (x, y) for some positive constant  c, with  c  =  1  in the first case.   
As noted earlier, results from  http://math.ucr.edu/~res/math133/metgeom.pdf  show that there is 

a similarity transformation  F  of  RRRR
2
  which extends  f , and this transformation is an isometry of  

RRRR
2
  in the first case.    Since similarity transformations are affine transformations, we can apply 

Corollary 7 from  http://math.ucr.edu/~res/math145A-2013/affine+convex.pdf  to obtain some 
information about the behavior of  f  and  F. 
 

LEMMA A1.    Let   F  a similarity transformation of  RRRR
2
 sending A(p, q)  onto  A(r, s). Then  F  

maps the vertices of  A(p, q)  onto  A(r, s).  
 

Conclusions of the proofs.    Assume first that  A(p, q)  is similar to  A(r, s)  with ratio of 
similitude  c.   In general, for every (u, v)  such that  0  <  v  ≤  u, the distances between the 
various pairs of distinct vertices for  A(u, v)  are given as follows:   
 

1. For { (0, 0), (0, v) }  and  { (u, 0), (u, v) }, the distance is equal to  v. 
 

2. For { (0, 0), (u, 0) }  and  { (0, v), (u, v) }, the distance is equal to  u. 
 

3. For { (0, 0), (u, v) }  and  { (u, 0), (0, v) }, the distance is equal to  sqrt (u
2
 + v

2
).   

 



These distances are in the order  0  <  v  ≤  u  <  sqrt (u
2
 + v

2
).  Of course, if  (u, v)  =  (r, s)  

then the ordered list of differences is  0  <  s  ≤  r  <  sqrt (r
2
 + s

2
); however, since we are given 

that  A(p, q)  is similar to  A(r, s)  with ratio of similitude  c, the ordered list of distances for the 

rectangular region  A(r, s)   is also equal to  0  <  c q  ≤  c p  <  c · sqrt (p
2
 + q

2
), and since 

these two ordered lists must be identical it follows that  s  =  c q  and  r  =  c p.   Therefore we 

have   r/p   =   c    =    s/q .   This proves the “if ” part of the second statement.    The proof for 
the “if ” part of the first statement is essentially the same; this is merely the special case for 
which the ratio of similitude  c  is equal to 1.����    

 
Appendix B:  Proof that polar coordinates determine a homeomorphism 

 
We shall prove that the polar coordinate map sends the rectangular region [½, 1] × [0, 8ππππ] 
homeomorphically onto the spiral ribbon described on pages 3 – 4 of this document; we recall 

that the defining inequalities are  θθθθ + ½  ≤  r  ≤  θθθθ + 1  and  0  ≤  θθθθ  ≤  8 ππππ.   In the drawing 
below, the spiral region is colored in blue. 
 

 
 

The spiral band defined by the preceding inequalities is the image of the rectangular region in 

the  r θθθθ – plane under the composite PPPP  F, where  PPPP  is the polar – to – rectangular coordinate 

mapping  PPPP (r, θθθθ)  =  (r cos θθθθ, r sin θθθθ)  and  F (r, θθθθ)  =   (r + θθθθ, θθθθ).  Since we want to show this 

composite is 1 – 1 on the given rectangular region, it will be helpful to recall the conditions 

under which polar coordinates map two points in the  r θθθθ – plane to the same point in the x y – 
plane: 
 

POLAR COORDINATE AMBIGUITY.  Let  r  and  s  be nonnegative, and suppose that  θθθθ  and  

ϕϕϕϕ  are such that  PPPP (r, θθθθ)  =  PPPP (s, ϕϕϕϕ).  Then   r  =  s  and one of the following holds: 
 

1. We have  r  =  s  =  0, and  PPPP (r, θθθθ)  =  PPPP (s, ϕϕϕϕ)  for all  θθθθ  and  ϕϕϕϕ .    
 

2. We have  r  =  s  >  0, and  PPPP (r, θθθθ)  =  PPPP (s, ϕϕϕϕ)  if and only if   θθθθ    – ϕ   ϕ   ϕ   ϕ  =   2 k π  π  π  π  for some 

integer  k. 
 

In particular, if  A  is a subset of the r θθθθ – plane on which  r  >  0  and such that  PPPP   is not 1 – 1, 

then there is a pair of elements in  A  of the form  (r, θθθθ)  and  (r, θθθθ + 2 k ππππ)  for some nonzero 
integer k.  
 

Let  B  be the rectangle described above, and let  A  =  F[B].  For a fixed  C  >  0, we need to 

find all  θθθθ  such that  (C, θθθθ)  belongs to  A;  the defining inequalities for  A  imply that   
 

C – 1   <   θθθθ   <   C – ½ 
 

and therefore A  does not contain a pair of points of the form  (C, θθθθ)  and  (C, θθθθ + 2 k ππππ)  for 
some nonzero integer k.  Thus the preceding discussion shows that the restriction of  PPPP   to  A  is 

1 – 1, and since  F  is 1 – 1 it follows that the restriction of  PPPP  F  to  B  is also 1 – 1.  A 
consequence of the “Inverse Function Theorem for Compact Metric Spaces” (specifically, 



Corollary 13.27 on page 136) then implies that  PPPP  F  maps the rectangular region  B  
homeomorphically onto the spiral band. 

 
Appendix C:  Interactive software for deforming images 

 
The images at the bottom of page 4 were created using the software application DeformerPro 
1.0, which can be legally downloaded free of charge from the following site: 

 

http://deformer-pro.en.uptodown.com/download 
 

Unlike many sites for downloading free software, this site does not download or install additional 
unwanted material, and there are not even any annoying prompts that require negative input 
from the user.   The download is in a compressed format, and the following free and versatile 
unzipping program is highly recommended for this and many other downloads: 

 

http://7-zip.org/ 
 

Note on using the program:  When a picture is loaded into DeformerPro 1.0 for processing, a 
rectangular or triangular grid is superimposed over the picture (see the screen shot below) and 
one deforms the picture by pointing, clicking and dragging the mouse over the grid.   
 

 
 

The program allows deformations that are not 1 – 1, and in order to ensure that the maps in 
question are homeomorphisms it is necessary to take care so that none of the vertical, 
horizontal or diagonal lines meet each other at any points other than those where they meet 
when the grid first appears on the screen.  This is the case with the left hand picture below but 
not with the right hand picture (notice that parts of the image overlap others). 
 

 


