Supplement to Chapter 11 of Sutherland,
 Introduction to Metric and Topological Spaces (Second Edition)

The Hausdorff Separation Property for Metric Spaces is apparent from the following drawing, in which \mathbf{U} and \mathbf{V} are open disks with centers \mathbf{x} and \mathbf{y}. The respective radii are \mathbf{a} and \mathbf{b}, where the latter are assumed to satisfy $\mathbf{a}+\mathbf{b}<\mathbf{d}(\mathbf{x}, \mathbf{y})$. This is slightly more general than the situation described in Sutherland.

For the sake of completeness, here is a proof that \mathbf{U} and \mathbf{V} are disjoint. If \mathbf{z} is a point belonging to both open subsets then by hypothesis $\mathbf{d}(\mathbf{z}, \mathbf{x})<\mathbf{a}$ and $\mathbf{d}(\mathbf{z}, \mathbf{y})<\mathbf{b}$. Then the Triangle Inequality implies that

$$
d(x, y) \leq d(x, z)+d(z, y)<a+b<d(x, y)
$$

which is a contradiction. The source of this contradiction is the assumption that \mathbf{U} and \mathbf{V} have a common point, so no such point can exist.

