Third Supplement to Chapter 12 of Sutherland,

Introduction to Metric and Topological Spaces (Second Edition)

If X is a finite set with n elements, then there are only finitely many possible topologies on X (a simple upper bound is 2 raised to the 2^{n} power), and in view of the material in this chapter one can ask how many of these topologies are connected. Similarly, in the setting of intro2topA07a.pdf one can ask how many can ask how many homeomorphism types of topologies on X are connected. Here are the answers to these questions for the cases $n=2,3$:

If $n=2$ then the discrete topology is the only one which is not connected.
If $n=3$ then the only topologies which are not connected are the discrete topology, the three topologies in the homeomorphism type of the example whose nonempty proper subsets are $\{0\}$ and $\{1,2\}$ (a union $A \cup B$, where A and B are disjoint open subspaces with the indiscrete topologies with $|A|=1$ and $|B|=2$), and the six topologies in the homeomorphism type of the example whose nonempty proper subsets are $\{0\},\{1\},\{0,1\}$ and $\{1,2\}$ (a union $A \cup B$, where A and B are disjoint open subspaces such that $|A|=1$ and B is homeomorphic to the Sierpiński space).

