
Fourth Supplement to Chapter 12 of Sutherland,

Introduction to Metric and Topological Spaces (Second Edition)

The starting point is the following result, which was discussed at the end of Chapter 8 in
math145Anotes07-09.pdf:

PROPOSITION. Let a < x < y < b in R. Then there is a homeomorphism f from (a, b) to
itself such that f is strictly increasing and f(x) = y. In fact, f extends to a homeomorphism from
[a, b] to itself with f(a) = a and f(b) = b.

COROLLARY. If a < b ∈ R and u, v ∈ (u, v), then there is a homeomorphism f from (a, b) to
itself such that f is strictly increasing and f(u) = v. In fact, f extends to a homeomorphism from
[a, b] to itself with f(a) = a and f(b) = b.

Derivation of the corollary. If u < v this is the conclusion of the proposition, and if u = v we
can take f to be the identity. In the remaining case where v < u, we can use the proposition to
find a homeomorphism g from (a, b) to itself such that f is strictly increasing and g(v) = u (and g
extends to [a, b] as in the proposition). If f = g−1, then f has all the required properties.

Proof of the proposition. The underlying geometric idea is simple; namely, we stretch the
interval [a, x] linearly to [a, y] and shrink the interval [x, b] linearly to [y, b]. If we define linear
functions g

−
(t) and g+(t) as below, the first function will do the desired stretching and the second

will do the desired shrinking:

g
−

(t) = a + (t − a) · y − a

x − a
, g+(t) = b + (t − b) · y − b

x − b

By construction the functions g
−

and g+ are strictly increasing linear functions (the coefficient of
t is positive in each case), and we also have

g
−

(a) = a , g
−

(x) = y , g+(x) = y , g+(b) = b .

If we now define f on [a, b] by f(t) = g
−

(t) for t ≤ x and f(t) = g+(t) for t ≥ x, then we obtain a
well-defined and strictly increasing continuous function which maps [a, b] to itself and sends each
end point to itself. We can now use the main result in math145Anotes12a.pdf to conclude that f
has a continuous inverse and hence is a homeomorphism.

The focus of this document is on generalizing the proposition to connected open subsets in
higher dimensional coordinate (= Euclidean) spaces R

n. We shall concentrate on the case n = 2,
and at the end we shall indicate how one can prove a generalization to higher values of n.

We shall use the following result/example from intro2topA-08.pdf (see page 5 of that docu-
ment):

EXAMPLE. There is a homeomorphism of the solid square [−1, 1] × [−1, 1] to itself with the
following properties:

(1) The center (0, 0) is mapped to the point (a, 0) where a is an arbitrary point in the open
unit interval (0, 1).
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(2) Every point on the boundary of the square, which is equal to

{−1, 1} × [−1, 1] ∪ [−1, 1] × {−1, 1}

is sent to itself (by the identity map).

(3) The t-axis is sent to the broken line curve with two linear segments, one joining (0,−1)
to (a, 0) and the other joining (a, 0) to (0, 1).

(4) The square regions formed by intersecting the square with the four closed quadrants
(defined by {x, y ≥ 0}, {x ≥ 0 ≥ y}, {0 ≥ x, y} and {y ≥ 0 ≥ x} respectively) are sent to closed
regions bounded by trapezoids (there is a drawing on page 5 of the document cited above).

Furthermore, an explicit formula for this homeomorphism is given by

F (s, t) =
(

a − a |t| + s(1 − a + a |t|), t
)

if s ≥ 0

F (s, t) =
(

a − a |t| + s(1 + a − a |t|), t
)

if s ≤ 0

One can check directly that the two formulas yield the same value at the points where s ≥ 0 and
s ≤ 0 (i.e., s = 0).

We shall use the construction described above to prove the following result on homeomorphisms
of a disk:

CONSTRUCTION LEMMA. Let ε > 0, let εD denote the closed disk defined by x2+y2 ≤ ε2,
and suppose that v ∈ R

2 satisfies |v| < ε/
√

2. Then there is a homeomorphism h from εD2 to itself
such that h is the identity on the boundary circle (defined by x2 + y2 = ε2) and h(0) = v.

Proof. The first step is to prove this result when ε =
√

2 and v is a positive multiple of the
first unit vector such that |v| < 1. Then

√
2D is the union of the square E = [−1, 1] × [−1, 1]

and the set C defined by x2 + y2 ≤ 2 and either |x| ≥ 1 or |y| ≥ 1 (or both). The intersection
of these sets is the boundary of the square described in (2) above. Define h on

√
2 D such that h

is the previously described homeomorphism F on E and h is the identity on C. These functions
combine to form a well-defined continuous function on

√
2D because the restriction of F to the

boundary of E is the identity (see intro2topA-10b.pdf for more on this point). In fact, the
mapping h constructed by this procedure is a homeomorphism, for we can construct a continuous
inverse explicitly by taking F−1 on E and the identity on C (the discussion in the last paragraph
on page 5 of the file intro2topA-08.pdf can be used to obtain a formula for F −1 and show that
the latter is continuous). It follows immediately that this homeomorphism has all the required
properties for the given choice of v.

The second step is to prove the result when ε =
√

2 and v is an arbitrary vector such such that
0 < |v| < 1. Let u be the unit vector |v|−1 · v, and let T : R

2 → R
2 be a linear rotation sending

the first unit vector (1, 0) into u. If h is the homeomorphism in the first paragraph which sends
(0, 0) to (|v|, 0), then T oh oT−1 will be the desired homeomorphism from

√
2 D to itself which is

the identity on the boundary and sends (0, 0) to v.

The final step is to prove the result when ε > 0 is arbitrary and v is a nonzero vector such
that |v| < ε/

√
2. Let k be the homeomorphism constructed in the preceding step such that

k(0, 0) =

√
2

ε
· v

2



and let S : R
2 → R

2 be the scalar multiplication homeomorphism defined by

S(a) =
ε√
2
· a

for all a ∈ R
2. Then S oh oS−1 will be the desired homeomorphism from εD to itself which is the

identity on the boundary and sends (0, 0) to v.

We are now ready to prove the main result:

THEOREM. Let U be a connected open subset of R
2. Then for each pair of points x, y ∈ U

there is a homeomorphism h from U to itself such that h(x) = y.

Proof. For each u ∈ R
2 let Tu be the translation map Tu(w) = u + w. Suppose now that

x ∈ U , and choose ε > 0 so that N2ε(x) ⊂ U . If ∆ is the closed disk of radius ε centered at
x and y ∈ ∆ satisfies |y − x| < ε/

√
2, let ϕ be the homeomorphism in the Construction Lemma

from εD to itself such that ϕ is the identity on the boundary and ϕ(0) = y − x. Then Tx
oϕ oT−1

x

defines a homeomorphism from ∆ to itself which is again the identity on the boundary and sends
x to y. We can extend ϕ to a homeomorphism Φ on all of U by setting Φ equal to the identity on
U −Nε(x); since ϕ is equal to the identity on the boundary of ∆, it follows that Φ is a well-defined
homeomorphism from U to itself such that Φ(x) = y.

Now define a binary relation on the open set U by p ∼ q if and only if there is a homeomor-
phism h from U to itself sending p to q; it follows immediately that ∼ is an equivalence relation.
Furthermore, the construction of the preceding paragraph shows that each equivalence class of U
is open. Since the complement of an equivalence class is a union of the other equivalence classes,
it follows that an equivalence class is also closed in U . Since U is connected, there can be only one
equivalence class, and this yields the conclusion of the theorem.

Generalization to higher dimensions

We can prove a similar result for connected open subsets in R
n when n ≥ 3. This will only

require some relatively small adjustments to the preceding argument(s). In the construction of a
homeomorphism from [−1, 1]×[−1, 1] to itself from intro2topA-08.pdf, everything will go through
if we replace the second factor in the product, with the closed unit disk Dn−1 consisting of all points
t ∈ R

n−1 such that |t| ≤ 1 (note that [−1, 1] = D1). The boundary of the solid cylindrical region
Cn = [−1, 1] × Dn−1 is then equal to

{−1, 1} × Dn−1 ∪ [−1, 1] × Sn−2

(where the unit sphere Sn−2 is defined by |t| = 1), the constructed homeomorphism is the identity
on this boundary, and Cn itself is contained in the disk

√
2Dn ⊂ R

n of all points z such that
|z| ≤

√
2. As in the first step of the Construction Lemma, we can extend the homeomorphism on

[−1, 1] ×Dn−1 to a homeomorphism on all of
√

2 Dn by taking the extension to be the identity off
the open cylinder defined by the strict inequalities |s| < 1 and |t| < 1.

We can now proceed as in the second step of the Construction Lemma. Given such that
0 < |v| < 1, let u be the unit vector |v|−1 · v, and replace the linear rotation T of R

2 by an
orthogonal linear transformation T : R

n → R
n sending the first unit vector (1, 0, · · · , 0) into

u. With this adjustment, the second step in the proof of the Construction Lemma goes through
without further changes. This in turn allows us to use the same argument as in the final step to
prove an extension of the Construction Lemma in which R

2 is replaced by R
n, where n ≥ 2 is

arbitrary.
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The preceding conclusions imply that if U is an open connected subset in R
n (where n ≥ 2)

and x ∈ U , then there is some δ > 0 such that Nδ(x) ⊂ U and for each y ∈ Nδ(x) there is a
homeomorphism h from U to itself such that h(x) = y; the case n = 2 is established in the first
paragraph of the proof of the theorem, and we can use the generalization of the Construction
Lemma 1 to prove a similar result for all n ≥ 2.

Finally, we can complete the proof of the generalized theorem as follows: The equivalence
relation ∼ can be defined on a connected open subset of any topological space, and the reasoning of
the preceding paragraph implies that the equivalence classes of ∼ are open if U is an open subset of
R

n for n ≥ 2. From this point on, the argument in the proof of the theorem goes through without
further adjustments.
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