Topologically equivalent metrics on a product of two metric spaces

As noted in Chapter 5 of Sutherland (particularly Exercises 5.15 and 5.16 on page 58), if \mathbf{X} and \mathbf{Y} are metric spaces then there are three product metrics $\mathbf{d}_{\mathbf{p}}$ - where $\mathbf{p}=\mathbf{1 , 2}$ or ∞ - on the Cartesian product $\mathbf{X} \times \mathbf{Y}$ which yield the same underlying topological structure. The basic underlying reason for this is the string of inequalities $d_{\infty} \leq d_{2} \leq d_{1} \leq 2 \cdot d_{\infty}$. These inequalities can be restated in terms of the \mathbf{d}_{p} open disks as follows:

- For every real number $\mathbf{r}>\mathbf{0}$, the open $\mathbf{d}_{\mathbf{2}}$ disk of radius \mathbf{r} is contained in the open \mathbf{d}_{∞} disk of radius r.
- For every real number $\mathbf{r}>\mathbf{0}$, the open \mathbf{d}_{1} disk of radius \mathbf{r} is contained in the open $\mathbf{d}_{\mathbf{2}}$ disk of radius r.
- For every real number $\mathbf{r}>\mathbf{0}$, the open \mathbf{d}_{∞} disk of radius $1 / 2 \mathbf{r}$ is contained in the open \mathbf{d}_{1} disk of radius \mathbf{r}.

Here is a picture which illustrates these inequalities. The light blue square in the middle is the open \mathbf{d}_{∞} disk of radius $1 / 2 \mathbf{r}$, the union of this square with the yellow triangular regions is the open \mathbf{d}_{1} disk of radius \mathbf{r}, the union of these with the magenta circle segments is the open $\mathbf{d}_{\mathbf{2}}$ disk of radius \mathbf{r}, and the large square is the open \mathbf{d}_{∞} disk of radius \mathbf{r}.

These three metrics turn out to be part of a continuous family of metrics d_{p} for $\mathbf{X} \times \mathbf{Y}$ which are defined for all p satisfying $\mathbf{1} \leq \mathrm{p} \leq \infty$; this follows from the Minkowski inequality

$$
\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{1 / p}
$$

which holds for all $\mathbf{p} \geq 1$ (see http://en.wikipedia.org/wiki/Minkowski inequality for further information and a proof).

