Topologically equivalent metrics on a product of two metric spaces

As noted in Chapter 5 of Sutherland (particularly Exercises 5.15 and 5.16 on page 58), if **X** and **Y** are metric spaces then there are three product metrics d_p — where p = 1, 2 or ∞ — on the Cartesian product **X** × **Y** which yield the same underlying topological structure. The basic underlying reason for this is the string of inequalities $d_{\infty} \leq d_2 \leq d_1 \leq 2 \cdot d_{\infty}$. These inequalities can be restated in terms of the d_p open disks as follows:

- For every real number r > 0, the open d₂ disk of radius r is contained in the open d∞ disk of radius r.
- For every real number r > 0, the open d_1 disk of radius r is contained in the open d_2 disk of radius r.
- For every real number r > 0, the open d_∞ disk of radius ¹/₂r is contained in the open d₁ disk of radius r.

Here is a picture which illustrates these inequalities. The light blue square in the middle is the open d_{∞} disk of radius $\frac{1}{2}r$, the union of this square with the yellow triangular regions is the open d_1 disk of radius r, the union of these with the magenta circle segments is the open d_2 disk of radius r, and the large square is the open d_{∞} disk of radius r.

These three metrics turn out to be part of a continuous family of metrics d_p for $X \times Y$ which are defined for all p satisfying $1 \le p \le \infty$; this follows from the *Minkowski inequality*

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/p}$$

which holds for all $p \ge 1$ (see <u>http://en.wikipedia.org/wiki/Minkowski inequality</u> for further information and a proof).