SOLUTIONS TO EXERCISES FOR

MATHEMATICS 144 — Part 1

Fall 2006
(Complete through Section I1.1)

NOTE. Strictly speaking, the material in the exercises called Questions to consider will
not be covered on examinations, and similarly for the two groups of exercises for Section II.0
(Problems from Rosn and Additional exercises), but an understanding of proofs at the level of
the exercises for Section I1.0 will at least be useful, and it would also be good to understand the
responses given here to the questions for Section II.1.

I. General considerations

I.1: Overview of the course

Questions to consider

GENERAL REMARK. There are many possible correct answers to the questions for this section,
and the ones given below are just typical examples.

1. No one wants a building to have serious malfunctions when subjected to everyday
stresses and strains. Constant repairs of the supporting structure make it impossible to do the
work that one needs to do inside the building. Similarly, if mathematical foundations are not
constructed carefully, it is far more likely that problems with them will develop all the time and
interfere with the attempts to use mathematics for understanding concepts and problems.n

2. Careful preparation and designing often save time and energy in the long run, more
than repaying the initial investment needed to set them up and allowing one to do things that
would otherwise be very difficult or impossible. The same principle holds for mathematics. Good
formulations can make it much easier to understand a problem and solve it efficiently or successfully.s

3. If one dwells to much on small details for their own sake, this can disrupt efforts to
understand the original problem.s

4. Crash tests for automobiles are one example as are similar destruction tests to determine
the strength of objects like boxes or other containers. Heat tests to determine safe usages for
consumer or industrial products are another example.n

1.2 : Historical background and motivation

Questions to consider

1. The integral formula is just an extremely precise and convenient approximation to the
physical center of mass.



2. The argument assumes that the angle sum for all triangles is the same number S, and
the possibility of different sums for different triangles is overlooked.m

3. The equation of the line has the form y — % = m(x — %) One needs to show that
each of these lines, and also the vertical line z = % contains either a point with coordinates (0, ?)
such that 0 < ¢t < 1 or a point with coordinates (¢,0) such that 0 < ¢t < 1. This can be done
using a case by case argument for different choices of m and also for the vertical line. We shall
merely list the different cases and describe what happens. Drawing pictures for each case is strongly
recommended, and using the pictures one can then proceed to solve equations and prove that the
coordinates of the solution have the indicated form. Note that the slope m cannot be equal to —1

because that is the slope of the line joining (0,1) and (1,0).
m = 1. — This line also goes through the origin, which lies on the triangle.

m > 1. — These lines also goes through a point between (0,0) and (1,0) of the form (¢,0)
where ¢ lies between 0 and %

m = oo (vertical line). — This lines also goes through the point (3,0).

m < —1. — These lines also goes through a point of the form (¢,0) where ¢ lies between
1
5 and 1.

—1 < m < 1. — These lines also goes through a point of the form (0,%) where ¢ lies
between 0 and 1.m

4. There are four possibilities for the distribution of cards. Let A denote the number of
players receiving a picture card from the first deck and a number card from the second, let B be the
number of players receiving two picture cares, let C' be the number of players receiving a number
card from the first deck and a picture card from the second, and let D be the number of players
receiving two number cards.

We then have

A+B+C+D = 52

which is the total number of players and cards in each deck. Since there are 12 picture cards and
40 number cards in each deck we also have

A+B = B+C = 12 C+D = A+D = 40
and since all numbers are nonnegative it follows that A < 12 and D < 40. Thus we have
D = 40-A4 >40-12 = 28

which is larger than half the number of players.

5. Let z,, denote the nt® partial sum of the series. Then
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so that lim, ;o S3p+1 =1lim, o0 S3n = lim, 00 S3n+2. We need to piece these together to prove
that lim, o s, = %ln 2.

We now know the limits of the three sequences with terms ss,, Ssn+1, Ssn+2 €xist and have
the same value L. Therefore, for each € > 0 we can find some positive integer M such that m > M
implies |y,, — L| < ¢ for each of the sequences we have considered. Now suppose that n > N. Write
n = 3m + r where m is a nonnegative integer and r is one of 0, 1, 2. If M > 3M + 3, then m > M
and hence we have |s, — L| = |s3;m+r — L| < €. By the previous paragraph we know that L = 1In2,
so this completes the proof.m

6. If we substitute z = 7/2 into the series we obtain

4
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which is a divergent series and as such does not converge to zero.m

1.3: Selected problems

Questions to consider

1. It is not possible to impose such conditions because one always can put all the objects
into the same box. However, if we limit the number of objects that can be put into a given box, then
in some cases we can conclude that some box must contain at least two objects. In the suggested
example, suppose that box k contains aj objects, where we insist that a; < 3 for all k. Then we
have ), ar = 2n; if each ay, is less than 2, then since there are n terms it follows that the sum is
at most n. Note that this sort of argument actually proves a little more; namely, every box must
contain exactly two elements under the extra condition.m

2. This is just an algebraic exercise involving geometric series. The right hand side is equal

to
2 1+ ! + o 1+ 1
8 82 82 82

so all one needs to do is note that the sum of the geometric series which appears twice in this
expression is equal to 64/63 and simplify the resulting expression to check it is equal to 1/3.u

3. The simplest way to get some insight into 3 is to cube the equation z = y — 1. This
yields
2 = 28 = ¢ —3? + 3y — 1

which simplifies to y3 = 3y? — 3y + 3. If we subtract the expression on the right hand side from
both sides of the equation, we obtain a nontrivial cubic polynomial which has y as one of its roots.=



II. Basic concepts

I1.0: Topics from Logic

Problems from Rosen

Some of these are taken fairly directly from two solutions manuals that have been published to
be used with that text; the Student Solutions Guide (ISBN 0-07-247477-7) contains solutions for
the odd-numbered exercises, and the Instructor’s Resource Guide (ISBN 0-07-247480-7) contains
solutions for the even-numbered exercises.

1. (Sketch) In order to show that one is equivalent to the other, it is necessary to look
at all possible cases (p and g are both true, p is true but ¢ is false, p is false but ¢ is true, p and
q are both false) and check that the truth values of the two compound statements are the same in
all these cases. Direct checking shows that each of the latter will be true in the second and third
cases but false in the others.

2. (Sketch) Apply the same idea as in the previous exercise to show the equivalence.
Verifying that all three operations can be expressed using Sheffer’s stroke starts by observing that
NOT is so expressible. At the next step we see that AND is expressible in terms of NOT and
Sheffer’s stroke, so by the first step it can be expressed entirely in terms of the latter. Finally, at
the third step we see that OR can be expressed in terms of NOT and AND; since each of the latter
can be expressed entirely in terms of Sheffer’s stroke, it follows that OR can also be so expressed.

3. An implication is true if the hypothesis is false, so it is easy for the second compound
statement to be true if we take P(z) to be any statement that is not always true. For examples,
suppose let P(z) denote, “z is an even number.” If we now take (z) to be the statement, “z is
divisible by 4,” then the first compound statement will be false, but the first will be true.

4. Both are true precisely when at least one of the statements P(z) and Q(z) is true for
at least one admissible choice of z.

5. It suffices to find a counterexample. Let P(x) be the statement that x is an even number,
and let Q(z) be the statement that z is an odd number. Then the first compound statement is
true (every number is even or odd) but the second (all numbers are even or all numbers are odd)
is false.

6. Take P(z) and Q(z) as in the previous exercise. Then the first statement (there is a
number that is both even and odd) is false, but the second (there is an even number and there is
an odd number) is true.

7. A less formal way of expressing P(z,y) is to say that student z has taken class y. In
these terms, here are the everyday versions of the statements in the exercises:
(a) There is some student who has taken some class.
) There is some student who has taken all the classes.
) Every student has taken some class.
(d) There is a class that every student has taken.
(e) Every class has been taken by some student.
) Every student has taken every class.

(
8. We shall do them in order.



) There is some z such that z + y = y for all y.

(b) For all numbers z and y, if z is nonnegative and y is negative, then z — y is nonnegative.
(c¢) For all numbers z and y, the product zy is nonzero if and only if both z and y are nonzero.
) There are numbers z and y such that z2 > y and = < y.
) For all numbers z and y, there is a number z such that z + y = z.
) For all numbers z and y, if  and y are negative then their product zy is positive.

In fact, the first number is not a perfect square, for if it could be written as n? for
some positive integer n then the rational number 7/10%°° would be the square root of 2. Since v/2
is irrational, this yields a proof by contradiction. This proof is constructive because we explicitly
describe a number from the possibilities in the theorem which is not a perfect square.

10. It suffices to observe that 9 = 32 and 8 = 23 satisfy the given condition.

Note. Recently P. Mihiilescu proved a conjecture made in the 19" century by E. Catalan (1814~
1894); namely, that this is the only pair of consecutive positive integers which can be expressed
as a” and Y, where a,b,z,y are all positivie integers and the exponents z,y are greater than 1
(of course, the answer to the problem is no for trivial reaons if we allow either exponent to equal
1). The proof is at a very advanced level, but for the sake of completeness here is a reference: P.
Mihailescu, Primary cyclotomic units and a proof of Catalan’s Conjecture, [Crelle] Journal fiir die
reine und angewandte Mathematik 572 (2004), 167-195.

11. Each of the three numbers is either nonnegative or nonpositive, so at least two of
them, say m and n, are of the same type (positive or negative). But this means their product is
nonnegative. This proof is nonconstructive because we are only saying that one of the products
is nonnegative and do not specify which one(s) might satisfy the condition. (Actually all three
numbers turn out to be positive and hence all the pairwise products are too.)

12. To prove existence, suppose that n is odd, and write it as 2k + 1 for some other
integer k. Then simple algebra shows that n is equal to (k — 2) + (k + 3). — To prove uniqueness,
suppose that m is any integer such that n = (m —2) + (m + 3). If we simplify and use the previous
expression for n, we obtain the equation 2k + 1 = 2m + 1, and we can now use elementary algebra
to conclude that m = k.

13. A less formal way of stating P(z,y) is to say that the number m divides the number n

(evenly, with no remainder). In these terms, here are the answers with explanations in some cases:
(a) FALSE. Certainly 4 does not divide 5.

(b) TRUE.

(¢) FALSE. Some numbers do not divide others.

(d) TRUE. The number 1 evenly divides all numbers.

(e) FALSE. The first part gives a counterexample.

(f) TRUE. This follows from the comment in the third part.

14. We shall prove the contrapositive: If z is rational, then so is £3. — The product of

two rational numbers is rational, so z? is rational, and hence 23 = z2 - z must also be rational.

15. Consider the Pythagorean triples in the hint. We have 32442 = 52 and 524122 = 132.
Suppose we multiply the first equation by 132 and the second by 52. Then after doing some algebra
we find that

397 + 52% = 65% = 257 + 60°
and hence 652 is written as a sum of two squares in two different ways.
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In the preceding example, the sum of the two squares is itself a perfect squares; if one is willing
to take sums of two squares that are not necessarily perfect squares, then there are numerous
smaller examples such as 52 4+52 =50 =72+ 1or 424+ 72 =65 = 82+ 12 or 62 + 72 = 85 = 92 + 22,

16. The first few cubes are 1, 8 and 27; if we want to find a number that cannot be written
as a sum of eight cubes, we might look for a number that is 7 more than some small multiple of
8. In fact, we cannot write 23 in the prescribed manner. Certainly this is impossible if we use all
1’s or one 8, and if we use two 8’s we also need seven 1’s, and hence we need at least nine cubes to
write 23. In fact, this turns out to be the smallest possible counterexample.

Note. A proof of Lagrange’s theorem on expressing a positive integer as a sum of four (or fewer)
perfect squares is given in Section 7.4 of the following book: I. N. Herstein, Topics in Algebra (2°¢
Ed.), Wiley, New York, 1975, ISBN 0- 571-01090-1. — The proof is nominally at the advanced
undergraduate level, but it might be more accurate to place it at the beginning graduate level.

17. In fact, 7 is not a sum of two squares and the cube of a nonnegative integer. Any such
expression for a number less than 8 must be a sum of 4’s and 1’s, and at least four such numbers
are needed to obtain a sum of 7. Once again, this is the smallest possible counterexample.

18. There are several sequences of steps that will achieve the stated goal, and we shall
given the one in the supplement to Rosen. At each stage, let (a,b,c) denote the contents of the
jugs holding 8, 5 and 3 gallons respectively. Then at the initial stage we have (8,0,0). If we fill
the 5 gallon jug using the 8 gallon jug, we get the configuration (3,5,0). Now fill the 3 gallon jug
using the 5 gallon jug to get the distribution (3,2,3). Pour the contents of the 3 gallon jug back
into the 8 gallon jug so that we have (6,2,0), and pour the contents of the 5 gallon jug into the 3
gallon jug so that we have (6,0,2). Next, fill the 5 gallon jug using the 8 gallon jug to obtain a
distribution of (1,5,2). Finally, top off the 3 gallon jug using the 5 gallon jug; this leaves us with
(1,4,3) and hence the 5 gallon jug now has 4 gallons of water and thus we have measured out 4
gallons of water as asked for in the problem.



Additional exercises to work

1. Suppose that P is the statement that z is the real number zero, () is the statement that
z is the real number one, and R is the statement that z is a real number. Then both PV R and
Q@ V R are equivalent to R, but certainly P is not logically equivalent to Q.

Similarly, suppose P is the statement that the integer z is a perfect square, () is the statement
that the integer z is a perfect cube, and R is the statement that the intege z is a sixth power.
Then both PA R and Q A R are logically equivalent to R, but P and () are not logically equivalent
because there are integers that are perfect squares but not perfect cubes and vice versa.m

2. The statement JxVyQ(z,y) asserts there is an odd integer z such that for all odd
integers x the number y* is a perfect square. This is false. If z is odd then 3% is never a perfect
square. The statement Vy3zQ(z,y) asserts for every odd integer y there is an odd integer z such
that y* is a perfect square. This is also false for the same reasons.

Suppose that we look instead at the statements JyVzQ(z,y) and VzIyQ(z,y). The first one is
true; it suffices to take y to be a perfect square; if this is true then y* will also be a perfect square.
The second is true for the same reasons.s

Note. Here is a graphical explanation of why JzVyQ(z,y) is true implies that Vy3zQ(z,y)
is true. Set up a matrix whose rows correspond to the possibilities for £ and whose columns
correspond to the possibilities for y; it may have infinitely many rows or columns, but that need
not concern us here. Insert a T or F in each entry depending upon whether Q(z,y) is true or false.
Then Vy3zQ(z,y) means that each column has a T somewhere, and 3zVyQ(z,y) states that one
can always find a T in some fixed row (namely, the one corresponding to z).m

3. One way to work such a problem is to begin by listing all the integers between 1 and,
say, 100. One then eliminates all the prime numbers, then all the numbers of the form p + 1,
then all numbers of the form p + 4 and so on through p + 81, where the constants run through
all perfect squares. One then checks to see which numbers have not been eliminated as potential
counterexamples. The first one on the list is 25. This is a brute force approach but it works and
really does not require all that much effort.m

4.  Following the hint, write n> — 1 = (n — 1)(n? + n + 1). If the number on the left hand
side is prime, then one of the two factors on the right must be equal to 1. Since we are dealing
with positive numbers, it follows that n > 0 and hence that the second factor is greater than 1.
Therefore n — 2 = 1, so that n = 2, which means that p=n% —1="7m

5. If 3p + 1 = m?, then 3p = m? — 1 = (m — 1)(m + 1). By unique factorization into
primes, one of the factors on the right must be equal to 3 and the other equal to p. If 3 =m + 1
then m = 2 and p = 2; however, 7 = 3p + 1 is not a perfect square in this case. On the other hand,
if 3=m — 1, then p =5 and 3p + 1 = 16 = 42. Therefore the only possibility is p = 5.

II.1: Notation and first steps

Questions to answer

1. (i) We shall use the example of a deck of cards. Let A be the deck. Then the elements
of A are single cards, and A is not a single card, so A ¢ A.m
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(73) Suppose that A is a loaf of bread, so that the elements of A are slices of bread, and let B
be a shipment containing loaves of bread, including A so that A € B. Then B ¢ A because B is
not a slice of bread.n

(737) Let A be a slice of the loaf of bread B, and let B be one of the loaves in shipment C.
Then A ¢ C because it is only a slice of bread and not an entire loaf.m

2. Once again let B be a loaf of bread in shipment C, and let A be some but not all of the
slices of the loaf B. Only entire loaves are elements of C', s0o A ¢ C.m

3. The appropriate interpretation of a line lying on a plane is that the subset given by the
line is contained in the subset given by the plane.



SOLUTIONS TO EXERCISES FOR
MATHEMATICS 144 — Part 2

Fall 2006
I11. Elementary constructions on sets (continued)
IT1.2: Ordered pairs and products

FEzxercises to work

1. (1) Suppose that (z,y) lies in A x (BN D). Then z € A and y € BN D. Since the
latter means y € B and y € D, this means that

(z,y) e (AxB)N(AxD) .

Now suppose that (z,y) lies in the set displayed on the previous line. Since (z,y) € A x B we have
xz € A and y € B, and similarly since (z,y) € A X D we have x € A and y € D. Therefore we have
z € Aand y € BN D, so that (z,y) € A x (BN D). Thus every element of A x (BN D) is also a
member of (A x B) N (A x D) and vice versa, and therefore the two sets are equal.m

(2) Suppose that (z,y) lies in A x (BUD). Thenz € Aand y € BUD. If y € B then
(z,y) € Ax B, and if y € D then (z,y) € A x D; in either case we have

(z,y) € (Ax B)U(Ax D) .

Now suppose that (z,y) lies in the set displayed on the previous line. If (z,y) € A x B then z € A
and y € B, while if (z,y) € A x D then ¢ € A and y € D. In either case we have x € A and
y € BUD, so that (z,y) € A x (BN D). Thus every member of A x (B U D) is also a member of
(A x B)U (A x D) and vice versa, and therefore the two sets are equal.m

(3) Suppose that (z,y) liesin A x (Y — D). Thenz € Aandy € Y — D. Since y € Y we have
(z,y) € AxY, and since y ¢ D we have (z,y) ¢ A x D. Therefore we have
Ax(Y—-D) Cc (AxY)—(AxD) .

Suppose now that (z,y) € (A x Y)—(A x D). These imply that z € Aandy € Y but (z,y) € AxD;
since x € A the latter can only be true if y € D. Therefore we have that t € Aandy €Y — D, so
that

Ax(Y-D) D (AxY)—(AxD) .

This proves that the two sets are equal.m

(4) Suppose that (z,y) lies in (A x B) N (C x D). Then we have z € A and y € B, and we
also have x € C and y € D. The first and third of these imply x € A N C, while the second and
fourth imply y € BN D. Therefore (z,y) € (ANC) x (BN D) so that

(AxB)Nn(CxD) Cc (AnC)x(BND).
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Suppose now that (z,y) lies in the set on the right hand side of the displayed equation. Then
x€ ANC and y € BND. Since z € A and y € B we have (z,y) € A x B, and likewise since x € C
and y € D we have (z,y) € C x D, so that

(AxB)N(CxD) > (ANC) x (BN D) .

Therefore the two sets under consideration are equal.m

(5) Suppose that (z,y) lies in (A x B) U (C x D). Then either we have z € A and y € B, or
else we have £ € C' and y € D. The first and third of these imply x € AU C, while the second and
fourth imply y € B U D. Therefore (z,y) is a member of (AU C) x (B U D) so that

(AxB)U(CxD) Cc (AUC)x(BUD,) .

Supplementary note: To see that the sets are not necessarily equal, consider what happens if
ANC = BND = { but all of the four sets A, B, C, D are nonempty. Try drawing a picture in the
plane to visualize this.m

(6) Suppose that (z,y) liesin (X xY)— (A x B). Thenz € X and y € Y but (z,y) ¢ A x B.
The latter means that the statement

reAand ye B
is false, which is logically equivalent to the statement
eitherx ¢ Aory ¢ B .

If z ¢ A, then it follows that (z,y) € ((X — A) x Y), while if y ¢ B then it follows that
(z,y) € (X x (Y — B)). Therefore we have

(XxY)-(AxB) ¢ (Xx(Y-B))U((X-A)xY).
Suppose now that (z,y) lies in the set on the right hand side of the containment relation on the
displayed line. Then we have (z,y) € X x Y and also
eitherx ¢ Aory ¢ B.
The latter is logically equivalent to
reAandye B
and this in turn means that (z,y) ¢ A x B and hence proves the reverse inclusion of sets.m

2. A x B consists of all ordered pairs (a,b) with a € A and b € B. If there are no elements
in either A or B, then there is no way to make an ordered pair of this type.m

3. If the intersection is empty, then it is impossible to construct ordered pairs of the form
(z,y) with z € A and y € B. We claim this means that A N B = ). If not and z belongs to both,
then we would have (z,z) in the intersection of the Cartesian products.m

IT1.3: Larger constructions

FEzxercises to work
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1. The set $(F) is the set of all real numbers z such that x < M for some positive real
number M. Since |z| +1 > 0 and z < 1+ |z|, it follows that every real number z belongs to a
closed interval of the form [—M, M| and hence The set $(F) contains all real numbers; on the other
hand, since every element of the latter is a real number, the set in question is also contained in the
real numbers, so it must be equal to the real numbers. — To characterize the intersection, notice
that 0 € [-M, M] for all M and hence 0 lies in the intersection. On the other hand, if z # 0 then
|z| > 0 so that

1 1
z ¢ [—3lal 2]
and hence z does not lie in the intersection. Thus the intersection is the set {0}.

The same reasoning shows that one obtains the identical answers for the union and intersection
if the closed intervals [—M, M| are replaced by the open intervals (—M, M ).

2. We need to describe the sets L(n) for all integers n > 1. If n is even, then this set is
just the open interval (0,1) because even powers of 0 and 1 are equal to 0 and 1, even powers of
negative numbers are positive, while if z is positive and n > 1 then 2™ < z if and only if z < 1.
Thus the set L(n) is equal to the open interval (0,1) if n is even. Suppose now that n is odd. The
preceding discussion applies equally well if = is nonnegative. Furthermore, it z < 0 then we know
that z" < z if z < —1, while (-1)" = =1 and 0 > z™ > z if —1 < z < 0. Thus if n is odd then
L(n) is just the set (—oo, —1) U (0,1).

It follows that the union of the sets L(n) is equal to (—oo, —1) U (0,1) and the intersection of
the sets L(n) is equal to (0, 1).

3. Suppose that X is a subset of A for all A € C; then y € X implies y € A for all such A
so that y € N{A | A € C}, and hence we also have X C N{A | A € C}. Conversely, if X is a subset
of Ng A then X € Ng P(A), and therefore we have the equality N4 P(A) = P(N¢ A).

Suppose now that X is a subset of A for somew A € C; then it follows that X is a subset of
Uc A, and this yields the second relationship in the exercise.

Finally, we have that P({1}) U P({2}) is a proper subset of P({1,2}) because {1,2} is not a
subset of either {1} or {2}.a

4. Yes, one can use P(A) = P(B) to conclude that A = B. Define a subset of X to be
atomic if it has no nonempty proper subsets. Then the atomic subsets are those which contain
exactly one element. If P(A) = P(B), then they have the same atomic subsets. Now for one point
subsets we have that {z} = {y} if and only if z = y, and hence z € A and P(A) = P(B) imply
{z} € P(B), so that z € B. It follows that A C B, and reversing the roles of A and B we also
obtain B C A so that A = B

5. The “if” direction is trivial, so we focus on the “only if” direction here. Since (a,b,c) =
(u,c) where u = (a,b) and (z,y,2) = (v,2z) where v = (z,y), it follows that if the ordered triples
are equal then ¢ = z and u = v, and the latter in turn implies that a =z and b = y.»

6. With the given definition we have (z,y,z) = (z,y,y) even if x # y.u
II1.4: A convenient assumption

FEzercises to work

1. Follow the hint. Suppose that x has Russell type k, and consider the Russell type of
{z}. Since z is the only element of {z}, it follows that any €-sequence

ap € Gp_1 € --- a1 € {z}



must have a; = z. If £ has Russell type k£ then there is a sequance of this sort where n = k + 1 but
there are no sequences of this type where n > k+2. Therefore there is an €-sequence for {z} which
has k + 2 terms but no sequences with more terms, and hence the Russell type of {z} is k + 1.

The preceding tells us if we have a set z with Russell type zero, we also have the set {z}
with Russell type one, and likewise the singleton for the latter has Russell type two, and so on.
Therefore the proof reduces to verifying that there is a set of Russell type zero, and the empty set
satisfies this condition.m

2. If a set S has Russell type k, then every element of S will have Russell type at most
k — 1, and conversely if every element of S has Russell type at most kK — 1, then S has Russell type
at most k.

Suppose now that A and B have finite Russell types p and q respectively and that r is the
larger of p and ¢q. Then the Russell type of A U B is less than or equal to r.m

3. The end of any €-sequence for A x B must have terms of the form

- {{a}, {a,b} } = (a,b) € AxB

and if the sequence continues then the next term down must be {a} or {a, b}, while the term after
that must be a or b. If A anad B have finite Russell type, then there is some k such that every
€-sequence ending with an a or a b must have at most k£ + 1 terms. By the discussion above, it
follows that every €-sequence ending with A X B must then have at most k£ + 3 terms.a

4. Every €-sequence ending in P(A) must end with terms of the form b € B € P(A),
where B C A. Thus if A has Russell type n, then P(A) has Russell type n + 1=

IV. Relations and functions

IV.1: Binary relations

FEzxercises to work

GENERAL REMARK. There are several exercises which ask whether a given binary relation
is reflexive, symmetric, antisymmetric or transitive. We shall only work out a few representative
examples in detail and give yes/no answers for the others. Details for the remaining examples
appear in the handbooks written to accompany Rosen’s text.

1. (a) This relation is not reflexive because (1,1) and (4,4) are not elements of the subset.
It is not symmetric because it contains (2,4) but not (4,2). It is not antisymmetric because it
contains (2,3) and (3,2), and of course 2 # 3. To see it is transitive, one needs to enumerate all
the pairs of ordered pairs (a,b) and (b, c) in the relation:

(1] (2,2), (2,2)
2] (2,2), (2,3)
3] (2,2), (2,4)
[4] )
] )
] )



(7] (3,2), (2,2)
(8] (3,2), (2,3)
[10] (3,3), (3,3)
[11] (3,3), (3,4)

The transitivity of this relation amounts to saying that for each of these cases the corresponding
ordered pair (a,c) lies in the relation. One checks this out on a case by case basis.m

(b) This relation is reflexive, symmetric and transitive but not antisymmetric. We shall only
give details for the first two because the others are worked in a manner similar to the previous
exercise. The relation is reflexive because it contains each ordered pair (z,z). To show it is
symmetric, one must list all the ordered pairs in the relation

(1’]‘)’ (27 2)7 (27 ]‘)7 (1’2)’ (37 3)7 (4’4)
and check that the pairs with the entries switched
(]"]‘)’ (2’ 2)’ (]‘72)7 (27 ]‘)7 (37 3)7 (474)

also belong to the relation, which is straightforward.s

(c) This relation is symmetric, but not reflexive, antisymmetric or transitive. We have already
done examples for the first three types, so we shall only give details for the last conclusion. This
follows because the relation contains (2,4) and (4,2) but neither (2,2) nor (4,4). If a relation is
transitive and contains both (2,4) and (4, 2), then it must also contain both (2,2) and (4,4).m

(d) This relation is not reflexive, symmetric or transitive, but it is antisymmetric. The latter
is vacuously true because the relation does not contain two ordered pairs of the form (a,b) and
(b,a)'m

(e) This relation is not reflexive, symmetric, antisymmetric or transitive. However, the state-
ment of this problem differs from the corresponding statement in Rosen; specifically, the latter asks
about the relation given by (1,1), (2,2), (3,3), and (4,4). The relation in Rosen’s original prob-
lem is reflexive, symmetric, antisymmetric and transitive. We shall only discuss the antisymmetry
property (problems of the other types have already been considered). The only pairs (a,b) such
that both (a,b) and (b, a) are in the relation are the diagonal pairs of the form (a,a), so if one has
aRb and bRa then a = b follows.m

(f) This relation is not reflexive, symmetric, antisymmetric or transitive.s
2. (c) This relation is reflexive, symmetric and transitive, but not antisymmetric.m

(d) This relation is not reflexive, not symmetric and not transitive, but it is antisymmetric.
We shall only check the last of these. If xRy and yRz then we have x = 2y and y = 2z. The only
way this can happen is if x = y = 0, and of course it does happen in this case.n

(e) This relation is reflexive and symmetric, but it is neither antisymmetric nor transitive.
(f) This relation is symmetric, but it is not reflexive, not antisymmetric and not transitive.m

3. (a) This relation is symmetric, but it is not reflexive, not antisymmetric and not
transitive.m

(b) This relation is symmetric, but it is not reflexive, not antisymmetric and not transitive.m
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(c) This relation is symmetric, but it is not reflexive, not antisymmetric and not transitive.

(g9) This relation is not reflexive, not symmetric and not transitive, but it is antisymmetric. We
shall only check the last of these. If Ry and yRz then we have z = y? and y = x2. Substituting
the first equation into the second, we obtain y = y*, so that either y = 0 or y3 = 1. If y = 0 then
we must also have z = 0. If y> = 1 and we are dealing with real numbers, then we must have y = 1,
which in turn implies z = 1. [Note: If we allowed complex numbers then the relation would not
be antisymmetric, for if z is a non-real cube root of 1 and y = x? then y # z but z = y2.]u

(h) This relation is not reflexive, not symmetric, not transitive, and not antisymmetric. We
shall only check the last two of these. A counterexample to transitivity is given by (z,y) = (%, 1)
and (y, z) = (2, 5) For these choices we have x > y? and y > 22 but z < 22. A counterexample to

antisymmetry is given by the same (z,y).n

4. Yes. For the reflexive property, if for each  we have (z,z) € Ry and (z,z) € Ry,
then we also have (z,z) € Ry N Ry C R; U Ry. For the symmetry property, suppose first that
(z,y) € Ry N Ry. Then (z,y) € Ry and (z,y) € R, and since R; and Ry are symmetric it follows
that (y,z) € Ry and (y,z) € Ro, so that (y,z) € R N Ry. Suppose now that that (z,y) € R; U Rs.
Then (z,y) € Ry or (z,y) € Ry, and since R; and Rs are symmetric it follows that (y,z) € Ry or
(y,z) € Ry respectively, so that (y,z) € Ry N Ry.m

5. (a) Equivalence relation.m
(

b

) Not reflexive and not transitive.s
(c) Equivalence relation.m
(d) Not transitive.s
(e) Not symmetric and not transitive.
6. (a) Equivalence relation.m
b) Equivalence relation.m

)

¢) Not transitive.m

d) Not transitive.m

(
(
(
(e) Not transitive.s

7. The relation S is reflexive, for R is reflexive and xRz and xRz imply xSz. Suppose
now that £Sy. Then zRy and yRz, and by definition this also implies ySz. Finally, suppose that
xSy and ySz. Then we have xRy and yRx and, we also have yRz and zRy. By the transitivity of
R these imply that Rz and zRz, which means that £Sz. Therefore S is an equivalence relation.s

8. We first prove the (=) implication. Suppose that R is an equivalence relation. Then
it is automatically reflexive. Suppose now that zRy and yRz. Then we also have xRz because R
is transitive. But since R is symmetric the latter implies 2Rz and hence T is circular. Now we
prove the (<) implication. By assumption R is reflexive. To show that it is symmetric, suppose
that zRy. If we combine this with z Rz (since R is reflexive) and the circular property we conclude
that yRz. Finally, if zRy and yRz, then zRz since R is circular. However, we have shown that R
is symmetric, and therefore we also have xRz so that R is transitive. Hence R is an equivalence
relation.m

9. We have (z,y)P(z,y) because zy = zy, and if (z,y)P(z,w) then zw = yz, which is
equivalent to zy = wz, which means that (z,w)P(z,y). Finally, if (z,y)P(z,w) and (z,w)P(u,v),
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then zw = yz and zv = uw. Multiplying these equations together yields zwzv = yzuw, and since
w # 0 it follows that zzv = yzu. If z # 0 then we may divide both sides of the equation by z and
obtain zv = yu, which implies (z,y)P(u,v).

Suppose now that z = 0. Then 0 = yz = zw and since w # 0 it follows that x = 0. Likewise,
0 = zv = vw implies u = 0. But then we have zv = 0v = 0 = Ow = uw, so that (z,y)P(u,v) in
this case too. Therefore we have shown that the relation is an equivalence relation.

To prove the final assertion, we first show there is at least one r such that (z,y) = (r,1).
Specifically, if r = z/y, then yr = z = z - 1. Next, we must show there is only one such r, so
suppose we have (z,y)P(s,1). Then by the definition of the equivalence relation we have ys = z,
so that s = z/y, and hence s must be equal to the value of r give previously.s

10. Taking logarithms, we find that (z,y)Q(z,w) if and only if wlnz = ylnz. One can
now proceed as in the previous exercise to show that () is reflexive and symmetric, and also that ()
is transitive with separate consideration for the cases Inz # 0 and Inz = 0. Therefore the relation
Q is also an equivalence relation.m

11. (¢) There is a figure to illustrate the argument in the file knightmoves. JPG, with the
knight starting at its usual position at time 1 and different colors indicating new possibilities for
its positions at times 2 through 6. The picture indicates that the knight can reach every square in
6 moves or less. Writing everything down in detail is left to the reader.m

(13) The figure knight2.JPG shows how a knight starting at (0,0) can reach the diagonally
adjacent square (—1, —1) after two moves and the horizontally adjacent square (1,0) after three
moves, with the first move going to (1,2). Symmetry considerations yield all the eight cases as
follows:

0,0) - (1,2) —» (-1,1) — (1,0)

0,0) = (1,-2) — (-1,-1) — (1,0)
0,0) —» (—-1,-2) — (1,1) — (-1,0)
0,0) - (-1,2) = (1,-1) = (-1,0)
0,0) = (2,1) — (1,-1) — (0,1)

0,0) = (-2,1) = (-1,-1) — (0,1)
0,0) — (

Note that there is duplication in this list, for each adjacent square appears in exactly two sequences.n

12. The union of the relations is that a is a multiple of b or b is a multiple of a, and
the intersection is that a is a multiple of b and b is a multiple of a. The first of these cannot be
simplified, but the second can as follows: if ¢ = zb and b = ya, then ¢ = b = zya implies that
zy = 1, so that £ = y = £1, and hence the intersection is the relation that a = +b.»

13. As noted in the hint, the statement 2 S°T y means that y —2 = b(axz — 1) where a and
b are +1. There are two sign choices for each of @ and b, and since they may vary independently
there are a total of four possible values of y related to a given value of x under the relation ST

y—2=24+(z—-1)=z+1
y—2=2+(—z-1)=1-z
y—2=2—(z—-1)=3-z



y—2=2—(—z—-1)=3+z

If £ = 1 we obtain the possible values of 2,0, 4 for ¢; note that the first and third formulas give the
same value for y. On the other hand, If z = 2 we obtain the possible values of 3, —1,1,5 for y.=

14. Suppose that z Se (77 UT») y. Then we have z S z and z (T3 U Ty) y for some z. If
z Ty y then we have £ S°T; y and on the other hand if z T5 y then we have x S°T5 y; in both
cases we have
x [SOTl U S"Tg] Y

and therefore we have S°(TyUTz) C S°T3US°T5. — Conversely, suppose that z [SeT; U S°T3] y.
Then either there is some z such that z S z and z T y or else there is some z such that x S z and
z Ty y. In both cases we have z (T3 UT3) y and hence z S° (T UT3) y.

Suppose now that z S° (T3 NT2) y. Then we have z S z and z (T} N T5) y for some z. In
particular, we have z T1 y and z T3 y, which means that

x [S°T1 N SOTQ] Yy

and consequently S°(T) NTy) C S°Ty N SeTy).

Here is an example where the containment in the preceding paragraph is proper. Take a
set consisting of the four objects {z,a,b,y}, and define binary relations S, T;, T3 such that the
following are the only true statements about them:

z S a, z S b, a Ty, bTyy
Then Ty NT> = B, and hence we must also have S°(T; NT,) = 0; in other words, there are no
choices of u and v for which u S°(T} NT5) v is true. On the other hand, by construction we know
that x S°T; y and x S°T5 y are both true, so that
T [S°T1 N S°T2] Yy

is true, Therefore the binary relations S°T7 N SeT5 and S°(T; NT3) are not equal.m
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IV. Relations and functions

IV.2: Partial and linear orderings

FEzxercises to work

1. We shall prove the statement about intersections of partial orderings first. By definition
we have x (P; N Py) y if and only if  P; y and « P» y. REFLEXIVE PROPERTY. Since z P; x and
x Py x, we have x (PyNP;) x. SYMMETRIC PROPERTY. In this case we are given x Py y, x P» vy,
y Pp z and y P, x. Since P; and P, are both partial orderings it follows that x = y. TRANSITIVE
PROPERTY. We are now given x Py y, x P, y, y P, z and y P> z. Since P; and P, are both
partial orderings it follows that x P, z and x Ps z, so that x (P, N Ps) 2.

Finally, we need to show that P; U P; is not a partial ordering. Take a set with two elements a
and b, and let P; and P, be the unique partial orderings for which a P; b and b P, a. Then a # b
but a (P UPy) band b (P, UP,) a, so the union relation is not antisymmetric and hence it cannot
be a partial ordering.m

Further question. If the two orderings in the previous problem are linear, then the
intersection is not necessarily a linear ordering (look at the second example; in this case a and b
are not comparable).n

2. The elements greater than (2,3) in the lexicographic ordering are (2,4), (3,n) and (4,n)
where n = 1,2,3,4. Likewise, the elements less than (3,1) are (1,n) and (2,n) for the same range
of values for n.m

3.  We shall work the parts in order.

(1) The reflexive property follows from the construction. To prove the symmetric property,
suppose that [a,b] P [c,d] and [c,d] P [a,b]. If [a,b] # [c,d], then by definition we have b < ¢ and
d < a. Since a < b and ¢ < d, this yields the impossible chain of strict inequalities a < b < ¢ < d <
a < b. Thus the only logical possibility is for the two intervals to be equal. Finally, suppose we have
[a,b] P [c,d] and [e,d] P [e, f]. The conclusion is trivial if either [a,b] = [¢,d] or [¢,d] = [e, f], so
let us assume that neither holds. We then have b < ¢ < d < e < f, and this implies [a,b] P [e, f].

(2) The statement of the exercise is equivalent to the statement that if [a,b] and [c,d] are
comparable but unequal, then they must be disjoint. Suppose the two intervals are unequal. Then
if [a,b] P [c,d], we have b < ¢ which means that the two intervals are disjoint, while if [¢,d] P [a, b],
we have d < a which also means that the two intervals are disjoint.

(3) Consider the intervals [0, 1] and [0, 2]. These intervals are not equal and not disjoint, so by
the preceding part of the exercise they cannot be comparable with respect to the partial ordering
P



4. If we have a linearly ordered chain S| < --- < S, then the number of elements in S} is
at least one more than the number of elements in Si_1. Since S| contains at least zero elements,
this means that the number of elements in S,, is at least m — 1. Since S has n elements, this means
that m —1 < n or m < n+2. To get a linearly ordered set with n + 1 elements, start with S; = (),
and for 1 <k<n+1llet Sy ={1,---,k—1}m

5. The relation is reflexive because p(x) < p(z) for all z. It is antisymmetric because
p(z) < g(x) for all  and ¢q(z) < p(z) for all z imply p(z) = ¢(x) for all z, and hence p = ¢. Tt is
transitive because p(x) < ¢(x) for all  and ¢(z) < r(z) for all z imply p(x) < r(x) for all x, so
that p <.

To show this partial ordering is not a linear ordering we need to find two polynomials p and ¢
such that p is not less than or equal to ¢ and vice versa. It will be enough to find p and ¢ together
with real numbers a and b such that p(a) > g(a) but p(b) < q(b), for the first implies p < ¢ is false
and the second implies that p > ¢ is false.

Specifically, take p to be the constant polynomial with value 1 and let ¢(z) = x. Then we have
q(1) > p(1) but g(—1) < p(-1).=

6. (a) £ and m are the maximal elements.m

(b) a, b and ¢ are the minimal elements.m

(¢) No. There is no element that is greater than or equal to both ¢ and m.m
(

d) There is no least element, because there is no element that is less than or equal to all of a,
b, ca

(e) ¢ and m are the upper bounds.=

(f) There is none; such an element would have to be less than or equal to both of the upper
bounds described above, and no such upper bound exists.m

(9) There are no elements that are less than or equal to all three of f, g, h.m
(h) Since there is no lower bound, there cannot be a greatest lower bound.m

15.  There are two things two prove, the first being the general fact about betweenness and
the second being the assertion that exactly one element lies between the other two. To prove the
first, note that y is between x and z means that z < y < z or z < y < x, and this is equivalent to
saying that z <y < z or x < y < y, which is the condition for y to be between z and =x.

There are six different ways of permuting the variables z,y, z in the statement, “x is between
y and z.” By the previous paragraph they can be grouped into three pairs such that the two
statements in each pair are logically equivalent:

(1) “y is between z and z” and “y is between z and x.”

(2) “zis between z and y” and “z is between y and z.”

(3) “x is between y and 2” and “z is between z and y.”

Given an arbitrary subset of three distinct elements, we need to prove that one of these pairs of
statements will be true and the others will be false. The discussion splits into several cases.

Case 1. Suppose that © < y. Then there are subcases depending upon z is related to x and
y. SUBCASE 1A. y < z. — In this case y is between = and z. SUBCASE 1B. z <y and x < z. —
In this case z is between z and y. SUBCASE 1C. z < y and z < . — In this case x is between z
and y.



Case 2. Suppose that y < x. There are again subcases depending upon z is related to x and
y. SUBCASE 2A. z < y. — In this case y is between = and z. SUBCASE2B. y < zand z < x. —
In this case z is between = and y. SUBCASE 2C. y < z and = < z. — In this case x is between z
and y.

In every case we have shown that one element is between the other two. We shall conclude by
showing that if y is between x and z, then z is not between y and z and x is not between y and
z. If we can show this, we are essentially done, for the other two cases will follow by interchanging
the roles of x, y and z in the argument.

Suppose first that y is between = and z and z is also between y and x. Then we have x < y < z
or else we have z < y < z. Similarly, we also have y < z < z or x < z < y. There are four possible
pairs of inequalities under the given assumptions. We shall show they all lead to contradictions.

(1) x <y < zand y < z < z lead to the conclusion x < x, which we know is false.

(2) <y < zand x < z < y are inconsistent because only one of the relations y < z and
z < y can be true.

(3) z<y<zand y < z <z again lead to the conclusion = < z, which we know is false.

(4) z <y <z and x < z < y are again inconsistent because only one of the relations y < z
and z < y can be true.

Therefore we have shown that if y is between x and z, then neither x nor z can be between
the remaining two points, and as noted before this suffices to complete the proof.m

IV.3: Functions

FEzxercises to work

1. There are two reasons why it is not the graph of a function. The first is that Grover
Cleveland served nonconsecutive terms and was succeeded by Benjamin Harrison after the first
term and by William McKinley after the second. The other reason is that the successor to the
current President is not presently known,m

2. The main point is to find the graph. If A is nonempty, then we simply take its graph
to be A x {x}; this represents the constant function whose value is x at every element of A. If A
is empty, then we take the graph to be the empty set. These prove existence of a function from A
to {z}.

To prove the function is unique, if A is empty, then its graph is a subset of A x ) = () and
thus is equal to the graph of the previously defined example. If A is not empty, then A x {x} is
the only subset of itself that contains a point with first coordinate a for all choices of a € A, and
therefore the graph of an arbitrary function from A to {x} must be equal to that of the example
in the previous paragraph.m

3. It is vacuously true that () = () x X is the graph of a function from @) to X, and conversely
since every subset of () x X is empty it follows that there is only one possibility for the graph.

On the other hand, if X is not empty then X x () = (), and hence every subset of X x () is also
empty; therefore if x € X is arbitrary then there is no ordered pair of the form (z,y) in a subset of
X x 0, so no subset of the latter can be the graph of a function.m
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4. The domain is the set of all positive integers, and the range is the set

{0,1,2,3,4,5,6,7,8,9} .=

5. The domain is the set of all positive integers, and the range is the set of integers
{0,1,2,3,4,5,6,7,8} .

Note that at least one of the digits from 1 through 9 must appear, and any higher number can also
appear.m

6. (7) We need to solve the equation f(x) = 3, where f(x) =3z — 7. But if 3x — 7 = 3,
then z = 22, and hence the inverse image is { }.=

(71) We need to find the singleton set whose element is f(5) =3 -5 — 7 = 8. Therefore the set
we want is {8}.m

(7i7) We need to find all x such that —7 < 3z — 7 < 2. Adding 7 to everything in sight we see
that the inequalities are equivalent to 0 < 3z < 9, which in turn is equivalent to = € [0, 3]. Hence
in this case the inverse image is equal to [0, 3].m

(iv) We need to find the set of all y such that y = 3z — 7 for 2 < 2 < 6. This turns out to be
the interval [—1,111, which is thus the image of the given interval.m

(v) The image of the empty set is always equal to the empty set.m

(vi) We need to find all z such that 3 <3z —7 < 5or 3z —7 < 8 < 10, and these are equivalent
to 10 < 3z < 12 or 15 < 3z < 17. Thus in this case the inverse image is equal to [%,4] U[5, 1{].m

7. (i) This is just the singleton set containing f(—1) = 0.m

(ii) The inequalities 0 < (z + 1)? < 1 hold if and only if —1 < z + 1 < 1, which in turn is
equivalent to z € [—2,0], so [—2,0] is the inverse image of the set in the problem.m

(i74) Since (z+1)? > 0 for all z, the inverse images of [—1,1] and [0, 1] are equal, so the answer
is the same as for the previous problem.m

(iv) The inequalities —3 < (x + 1)2 < 5 are equivalent to 0 < (x + 1)? < 5, which in turn is
equivalent to —5 <z + 1 < 5, so that the inverse image in this case is equal to [—6,4].u

(v) The inverse image of [—3, —1] is empty because f takes nonnegative values. As in (v) from
the previous exercise, this implies that the set to be determined is the empty set.m

(vi) By (#i7) we know that the inverse image of [—1, 1] is equal to [—2, 0], and the image of the
latter under f is equal to [0, 1], because z € [—2,0] implies z+1 € [~1,1], so that 0 < (z+1)2 < 1.m
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IV. Relations and functions

IV.4: Composite and inverse functions

FExercises to work

1. Suppose that X is linearly ordered and a,b € X are distinct. Then either a < b or
b < a, and since f is strictly increasing this means that f(a) < f(b) or f(b) < f(a). In both cases
we have f(a) # f(b), and therefore f is 1-1.

Here is a counterexample when X is not linearly ordered. Let X be the set of all subsets
of {0,1} ordered by inclusion, let Y be the nonnegative integers, and let f : X — Y denote the
number of elements in the subset A C {0,1}. Then f is strictly increasing, but f[{0}] = f[{1}].=

2. First of all, the problem should be corrected to read, “Given a set X, let Py(X) denote
the set of nonempty subsets of X, and define h : Py(A)x Py(B) — Py(AxB) by h(C,D) = CxD.”

[Otherwise the map is not 1-1 because, say, h(0, D) = (.]

If ho(C,D) = ho(C’,D’) then C x D = C" x D’. Suppose that z € C and y € D. Then
(x,y) € C x D =C"x D" implies that z € C' and y € D’, so that C C C’ and d C D’. Conversely,
if x € C" and y € D, then (z,y) € C' x D' = C x D implies that z € C’ and y € D', so that
C Cc ¢ and d C D'. Therefore C = C’ and D = D’. To see that hg is not onto, let A = B = {0,1}
and note that £ = A x B — {(1,1)} is not in the image of hg, which consists of the sets {z,y)},
{z} x B, Ax{y}, and A x B. Note that there are 9 sets in the image and 15 sets in the codomain.m

3. (a) This map is injective.n

(b) This map is not injective.m

(¢) This map is not injective.m

4. (a) This map is bijective.n

(b) This map is not bijective; it is neither injective nor surjective.m

(c) This map is not bijective from the reals to themselves, but it does define a bijection from
R—-{-2}toR—{1}.n

(d) This map is bijective.m

5. Suppose that f is a formal monomorphism; we need to show that f is also injective.
In other words, if x # y we need to prove that f(x) # f(y). Let X,Y : {1} — A be the functions
such that X(1) =z and Y(1) = y. Then f°X(1) = f(x) and f°Y (1) = f(y). It suffices to show
that feX # f°Y. Assume the contrary, so that f°X = f<Y. Since f is a formal monomorphism
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this would imply that X =Y, which would mean that z = y, a contradiction. Therefore a formal
monomorphism is injective.

Conversely, suppose that f is injective, and let g,h : C — A satisfy feg = feh. Then for all
z € C' we have f(g(z)) = f(h(2)), and since f is injective this means that g(z) = h(z) for all z.
Therefore g = h; since the latter were arbitrary pairs of functions satisfying feg = f°h, it follows
that f is a formal monomorphism.m

6. Suppose that f is surjective, and suppose that g,h : B — D satisfy gof = hef; we
want to show that g = h. Let b € B, and choose a € A such that f(a) =b. Then g(b) = g(f(a)) =
h(f(a)) = h(b), and since b was an arbitrary element of B it follows that g = h. Therefore f is a
formal epimorphism.

To prove the other implication, suppose that f is not surjective. Define g,h : B — {0,1} as
follows: Set g(b) =1 for all b, and set h(b) =1 if b = f(a) for some a and set h(b) = 0 otherwise.
Then g # h because f is not surjective, but for all a € A we have g(f(a)) = h(f(a)) = 1 so that
gef = hef, and hence f is not a formal epimorphism.m

7. (b) We always have f[AN B] C f[A] N f[B], so we really need to prove that f[AN B] D
fl[A]n f[B] for all A and B if and only if f is 1-1. (=) Let A = {a} and B = {b} where A # B.
Then AN B = (), so the condition on images implies

0 = flAnB] S fIAINfIBl = {f(a)}n{f(b)}

which can only happen if f(a) # f(b). Thus f is 1-1 if f[AN B] D f[A] N f[B] for all A and
B. (<=) Suppose now that f[AN B] 5 f[A] N f[B] for some A and B. Note first that both A
and B must be nonempty because f[A N B] = f[A] N f[B] if either A or B is empty. Then by
noncontainment there is some y € f[A] N f[B] such that y ¢ f[AN B]. This means there are a € A
and b € B such that y = f(a) = f(b), but a ¢ B and b ¢ A. The preceding conditions mean that
a # b, and since f(a) = f(b) it follows that f is not 1-1.m

(b) (=) Let A= {a} and let b # a. Then f(b) € f[ X —A] CY — f[A] =Y — {f(a)} implies
that f(b) # f(a), and therefore f is 1-1. (<=) Suppose now that there is a subset A C X such
that f[X — A] ¢ Y — f[A]. Note first that A # () because we do have set-theoretic containment (in
fact, equality!) if A = 0. It follows that there is some y such that y € f[X — A] but y € Y — f[A].
The second condition is equivalent to y € f[A]. We have thus shown that there are u,v € X such
that u € A and v € A but y = f(u) = f(v). Therefore f is not 1-1.m

(d) (=)Lety €Y. Ify € f[A] theny = f(a) for some a € A, whileify € Y — f[A] = f[X —A]
then y = f(b) for some b € X — A. In both cases y lies in the image of f. (<=) Suppose that f is
onto. If y € Y — f[A], then y = f(x) for some z, but since y & f(A) it follows that € X — A and
hence y €C f[X — A]. Therefore Y — f[A] C f[X — A].»

8. Follow the hint. Let z € A be arbitrary, and define g : B — A in cases: If b = f(a) for
some a € A, set g(b) = a; since f is 1-1 there is only one possible choice for a, so this defines the
function on all points of the given type. If b # f(a) for any choice of a, then set g(b) = z. Then
g(f(a)) = a by construction, so that gef =id4.m

9. Suppose we are given h, k : C — A such that feh = fek. Compose both sides with g:
gefeh = ida°h = h
g°efek = ida°k = k
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Since feh = f°k the expressions on the left hand sides of both lines are equal, and hence the same
is true for the expressions on the right hand sides. Hence h = k and f is a monomorphism.

To show that ¢ is an epimorphism, suppose we are given u,v : B — D such that u°cg = veg,
and compose both sides with f:

u°gef = w°idy = wu
vegef = weidy = w

As before the left hand sides of both lines are equal, so the right hand sides are too, and hence
u = v so that g is an epimorphism.=

10. This is really the same as the previous exercise if we interchange the roles of A and B
and of f and g. The whole point is that we have two maps whose composite QP is the identity,
and under these conditions P is a monomorphism and () is an epimorphism.s

11. The simplest example is the linear mapping L(t) sending ¢t € [0,1] to a + t(b—a). The
mapping is 1-1 because L(s) = L(t) implies a + s(b — a) = a + t(b — a) and since a # b one can
solve this equation to conclude that s = t. To see that the mapping is onto, one need only check
that if a < ¢ < b and

c—a

b—a
then 0 <t <1 and L(t) = ¢. The 1-1 correspondence L is definitely not unique. Let K be any 1-1
correspondence of [0, 1] with itself that is not the identity; for example, one could take K (t) = t2,
whose inverse is the square root function. Then L°K is a different 1-1 correspondence between
[0,1] and [a, b].m

12. Let N be the set of nonnegative integers, let f : N — N send x to x + 1, and let
g : N — N send z to |z — 1|. Then f is not surjective because 0 # f(x) for any x, and ¢ is not
injective because g(2) = ¢g(0), but gef is the identity on N. This yields the example for the first
part of the problem.

t =

As noted there are four subcases to the second part of the problem:

Is f injective if g° f is bijective? YES. Suppose that z and y lie in the domain of f and
f(z) = f(y). Then g(f(z)) = g(f(y)), and since ge f is bijective it follows that z = y.

Is f surjective if g f is bijective? NOT NECESSARILY. Consider the example constructed
for the first part of the problem.

Is g surjective if ge f is bijective? YES. If z is in the codomain of g, then the bijectivity of
ge f implies that z = g(f(w)) for some w, and thus we know that ¢ maps f(w) to z.

Is g injective if g° f is bijective? NOT NECESSARILY. Consider the example constructed for
the first part of the problem.n

13. In both cases the idea is to write y = f(x) and solve for x in terms of y.

If f(z) =3z — 1, then y = 3z — 1 implies that z = %(1‘ + 1), so the right hand side gives the
inverse function.

If f(x) = /(1 + |z|), then solving for z in terms of y splits into two cases depending upon
whether > 0 or x < 0. Note that these are equivalent to y > 0 and y < 0 by the definition of f.
If x > 0 then we have

_ _ _Y
R -y
while if z < 0 we have
_ z _ Y
e 1+y



so in either case we have y

r = —
1 — |yl

as the formula for the inverse function.m

14. Let n = int(z). There are two cases depending upon whether n < z < n + % or
n+ % <z<n+1.

In the first case we have int(z) = int (x + %) = n and since 2n < 2z < 2n + 1 we also have
int(2z) = 2n. Therefore int(2z) and int(x) + int (a: + %) are both equal to 2n in this case.

In the second case we have int(z) = n but int(z + 1) =n+1 and 2n+ 1 < 22 < 2n + 2.
Therefore int(2z) and int(z) + int (z + 1) are both equal to 2n + 1 in this case.s

15. Both statements are false, and this can be seen by taking x =y = % For these choices
we have
1 = int(3+2) # int(3) +int(3) = 0+0 = 0

and
2 = int (%) + int(f) #int(2) + int(2) + imt(¢) = 04+0+1 = 1.

Therefore the have values of  and y for which int(x) + int(y) # int(z + y) and int(z) + int(y) +
int(z +y) # int(2z) + int(2y).=

16. Let n = int(z). There are three cases depending upon whether n < z < n + % or
n+%§x<n+%orn+%§x<n+l.

In the first case we have int(z) = int (z + §)) = int (2 + 2) = n and since 3n < 3z < 3n+ 1
we also have int(3z) = 3n. Therefore int(3z) and int(z)+int (z 4+ 1) +int (z 4+ 2) are both equal
to 3n in this case.

In the second case we have int(z) = n and int (z+ §) = n but int (z+ 2) = n+ 1 and
3n+ 1 < 3z < 3n + 2. Therefore int(3z) and int(z) + int (z + §) + int (z + Z) are both equal to
3n + 1 in this case.

In the third case we have int(z) = n but int (z + §) =int (z + 2) =n+1land 3n+2 <3z <
3n + 3. Therefore int(3z) and int(z) + int (z + %) + int (z + %) are both equal to 3n + 2 in this
case.m

17. The important point is that if ¢ and b are positive real numbers, then

1 1
a < b = - > —.

a b
Suppose now that f is strictly increasing. Then x < y implies f(z) < f(y), and by the preceding
line and g = 1/f we conclude that g(x) > g(y), so that g is strictly decreasing. Conversely, if g
is strictly decreasing and = < y, then we have g(z) > g(y). Now g = 1/f is true if and only if
f =1/g, and therefore we can use the displayed statement to conclude that f(z) < f(y) and hence
that f is strictly increasing.m

18. Follow the hints. Given y € Cy we would like to define H by choosing z € A so that
go(x) = y [such an x exists because qq is onto] and setting H(y) = q1(x).

In order to make such a definition it is necessary to show that the construction does not
depend upon the choice of z; in other words, if go(z) = qo(z) = vy, then ¢1(x) = ¢1(z). All
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we have at our disposal are the injectivity and surjectivity assumptions along with the identities
f =Jo°qo = j1°q1. Since j; is injective, if we can show that jiq1(2) = jogo(z), then we will have
q1(z) = q1(x) as desired. But

ji(z) = f(2) = Jog(z) = Joly) = Joq(r) = f(z) = hiqa()

so we do have the necessary identity ¢1(z) = ¢1(x). Therefore we have defined a mapping H : Cy —
C4 such that Heqy = q;.

We now need to show that H is bijective. Suppose that H(y) = H(y’) and choose z,z’ so that
y = qo(x) and y' = go(z’). We then have

Jo(y) = Jowo(z) = f(x) = jig(z) = H1H(y)

Joy) = Joq(a") = f(&") = ha@) = HH®Y)
and since H(y) = H(y’) it follows that the expressions on both lines are equal, so that jo(y) = jo(y').
Since jo is injective, this implies y = 3’ and hence H is injective. To show that H is surjective,
express a typical element z € C; as ¢i(z) for some z; then if y = go(x) we have z = H(y). This
completes the proof that H is bijective.
All that remains is to show that H is unique. Suppose that K : Cy — (4 also satisfies
Keqy=q. Then if y € Cy and y = qo(x) we have

K(y) = Keq(z) = q(z) = He°gl(z) = H(y)

and hence K = H, proving uniqueness.n



IV.5: Constructions involving functions

FExercises to work

1. Suppose that we are given an arbitrary function g : A — F x F such that

g(a) = (u(a), v(a))

for some functions u: A — E and v: A — F. For each (e, f) € E x F we then have g(a) = (e, f)
if and only if u(a) = e and v(a) = f.

Let us apply this to the situation in the problem: Since p;(x) = d is equivalent to saying that
x lies in the equivalence class d, it follows that g(x) = (e, f) if and only if x € e and = € f, which
is equivalent to saying that z € eN f.m

2. Once again, follow the hints for each part.

The correspondence (B x C)4 «— B4 x C4. As in the hint let p and ¢ be the coordinate
projections from B x C to B and C respectively. Given f : A — B x C, one has the associated
pair (pef,q°f) € B4 x C4. This mapping is onto because one can use functions u : A — B and
v: A — C to define a function f(a) = (u(a), v(a)), and it is 1-1 because pf’ = pf and qf’ = qf
imply that the first and second coordinates of f(a) and f’(a) are equal for all am so that f and f’
are the same function.m

The correspondence (CB )A —— CB*A_ The hint outlines definitions of mappings
BxA B\A B\A BxA
$:CP* 4 — (CF) v (CF)" — P

that will be repeated in the argument. Given f : B x A — C, let I be its graph viewed as a subset
of B x A x C, and for each a € A let I, be given by taking the intersection

I'NnBx{a} xC

and projecting it down to B x C under the standard projection map B x {a} x C' — B x C which
forgets the middle coordinate. We claim there is a unique function g, : B — C' whose graph is
equal to I'(a); this amounts to checking that I'(a) is actually the graph of a function from B to C.
Suppose we are given b € B. Then there is a unique ¢ € C, namely f(b,a), such that (b,a,c) € T,
and for this choice of ¢ we also have (b,c¢) € T'(a). Suppose now that (b,¢’) € I'(a). Then by
definition we have (b,a,c’) € T', which means that ¢ = ¢/ and hence yields the required uniqueness
statement. Therefore we have constructed a mapping ® of the type described above.

To construct a map in the opposite direction, if we are given g € (CB )A, then for each a € A
we have a function g(a) : B — C. Let I'(a) be the graph of g(a), and T be the set of all ordered
triples (b, a, ¢) such that (b, ¢) lies in I'(a). We claim that I" is the graph of a function from B x A to
C. Given (b,a) € B x A we need to show there is a unique ¢ such that (b, a,c) € I'. Existence follows
because we can take ¢ = [g(a)](b). To see uniqueness, note that (b,a,c’) € T implies (b,¢’) € Ty, so
that ¢’ = [g(a)](b). Thus we have the map ¥ as required.

Finally, to show there are 1-1 correspondences it is enough to verify that ¥ e®(f) = f for all
f and ®°¥(g) = g for all g. These follow because our constructions have the property that I is
the set of all (b, a,c) such that (b,c) € I'(a).m



IV.6: Order types

FExercises to work

1. Define f : [0,1) U (2,3) — [0,2) by f(z) =z if z < 1and f(x) =x—1if z > 2. We
claim f is strictly increasing (hence is 1-1), and we shall do this by considering several . separate
cases. Suppose we have u < v. (1) If v < 1 then f(u) =u <v = f(v). (2) fu<1<2<wvthen
flwy=u<l<v—1=f). B)If2<wuthen f(u)=u—1<v—1= f(v).

To complete the proof it is enough to show f is onto. This is straightforward: If y < 1 then
y = f(y), while if y > 2 then f(y+ 1) =y.m

2. The interval [0, 2] has the self-density property: If u < v then there is some w such that
u < w < v. On the other hand, [0, 1] U [2, 3] does not because there is no w in this set such that
1 < w < 2 (it lies in the reals, where such a w exists, but we are only interested in elements of the
given partially ordered set here and not in any larger partially ordered set that might contain it).
Since one partially ordered set has the self-density property but the other does not, they cannot
have the same order type.m

3. Write X = P(A), where A is an infinite set, and let a € A. Then X does not have the
self-density property because there is no subset B C A strictly between () and {a}.

Turning to Y, suppose we have polynomials f and g such that f < g. Before going further,
we should stress what this means: We have f(z) < g(x) for all real x and there is some ¢ such that
f(e) < g(c); in particular, it does NOT mean that f(z) < g(x) for all z.

In any case let D = g — f so that h > 0, and consider h = f + %D. Then direct computation
shows have f < h < g (i.e., f(z) < h(z) < g(x) for all ) and f(c) < h(c) < g(c), so that
f<h<gn

4. A positive integer d divides 28 if and only if it has the form d = 227® where a and b are
integers satisfying 0 < a < 2 and 0 < b < 1, and likewise a positive integer e divides 45 if and only
if it has the form 3 = 35" where a and b are integers satsifying 0 < a < 2 and 0 < b < 1. If we
define a mapping from D(28) to D(45) taking d = 2°7° to e = 3?5, then this will be the required
order-isomorphism (we shall not check the details explicitly here),

On the other hand, in the notes we noted that D(15) is a partially ordered set with 4 elements
that is not linearly ordered, and the set D(8) is the linearly ordered set consisting of 1, 2, 4 and
8 (where the divisibility ordering agrees with the usual ordering!). In particular, D(8) also has
four elements. However, since D(8) is linearly ordered but D(15) is not, it follows that these two
partially ordered sets cannot have the same order type.m

5. As noted in the hint, for each x € N the set of all y such that y < z is finite, for it is
just {1,2,...,2 — 1}. On the other hand, the set of all elements of N x N (with the lexicographic
ordering) that precede (1,0) is the infinite set of all ordered pairs of the form (0, k) where k can be
any nonnegative integer. Thus one of the linearly ordered sets under consideration has the property

for each element a the set elements x for which x < a is finite

while the other does not, and consequently they cannot have the same order type.m
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V. Number systems and set theory

V.1: The natural numbers and integers
Ezercises to work

1.  Follow the hint. If we multiply out the right side of the equation x2+bx+c = (z—7r)(x—s)
we see that r + s = —b and rs = ¢, so both these quantities must be integers. It follows that
s = —b — r must also be a rational number. Furthermore, by the Quadratic Formula the roots r

and s are given by
—b+Vb% —4c
2

and hence we see that r — s = /b2 — 4c¢, so that the right hand side must be a rational number.

In order to proceed we need the following variant of the proof that v/2 is irrational: If a
positive integer m has a rational square root, then m is a perfect square. PROOF : We might
as well assume that m > 1 because we know that 1 is a perfect square. Express m as a product of
powers of primes

mo o= pit .. pit
and write

my = p‘il pzk
where s; = 0 if 7 is even and s; = 1 if r; is odd. Then m = m;mo where my is a perfect square
(it is the product of the numbers p;j ~% each of which is a perfect square because the exponents
are all even) and m; is either 1 or a product of distinct primes. Clearly /m is rational if and only
if \/my is rational, so it suffices to show that the latter is true if and only if m; = 1, which holds
if and only if each r; is even. Assume the contrary, and suppose that p; is a prime dividing m. If
\/mq is rational then we can write it as a quotient a/b where a and b are relatively prime positive
integers. We then have m1b? = a?, and since p; divides m it follows that p; must divide a?, which
in turn means that p? must also divide a?; by our choice of a and b it follows that p; does not divide
b. But since p? does not divide mq, this means that p; must divide b, contradicting the previous
sentence. It follows that m; = 1 and m is a perfect square.m

By the preceding discussion, we have seen that b?> — 4c = d? for some positive integer d. —
CLAIM: If b is odd, then d is odd, and if b is even then m is even. — If b is odd, then b? is also
odd, and hence b?> — 4c = d? is odd, which means that m must also be odd. On the other hand, if
b is even, then b? is divisible by 4, which means that d?> = b® — 4c is also divisible by 4, which in
turn implies that d must be even.

We now have that
—-b+d
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where b and d are both even or both odd. In either case we know that —b=d is even, and therefore
it follows that r (and also s) must be an integer.m

ALTERNATE APPROACH. One might also try to prove this result by saying that if p/q is a
rational root of the integral polynomial F'(¢) then ¢ divides the term of F with maximum degree
and p divides the constant term; if the coefficient of the term of maximum degree is 1, then it
follows that ¢ = £1 and hence the rational root must be an integer. These results on rational roots
of integral polynomials follow from a fundamental result of C. F. Gauss on factoring polynomials
with integer coefficients, but its proof is not covered in lower division mathematics courses, so
we shall include a little background here. We know that r = p/q is a rational root of a rational
polynomial F'(¢) if and only if (¢t — r) divides F'(t). The result of Gauss states that if we can factor
an integral polynomial A(t) as a product of two rational polynomials B(t) and C(t) of lower degree,
then in fact we can factor A as a product B1C4, where B; and C; are integral polynomials that
are rational multiples of B and C. Assuming that we have chosen p and ¢ to have no nontrivial
common factors, this means that (¢t — p) must divide F'(t) over the integers. But this means that
the coefficient of the highest power of ¢ in F(¢t) must be divisible by ¢ and the constant terms must
be divisible by p.m

References for the factorization result are pages 297-298 of the book by Gallian listed below
and pages 162-164 of the book by Hungerford listed below:

J. A. Gallian, Contemporary Abstract Algebra (Fifth Ed.), Houghton-Mifflen, Boston, 2002.
ISBN: 0-6188-12214-1.

T. W. Hungerford, Algebra (Graduate Texts in Math. Vol. 73). Springer-Verlag, New York,
1974. ISBN: 0-387-90518-9.

2. DISREGARD. [In the proof above we use the fact that the square root of an integer is
rational if and only if the integer is a perfect square, so any attempt to derive the irrationality of
/2 from the preceding exercise is basically circular reasoning.]

3. Follow the hint. Let B be a nonempty set of A, and let C' be the set of all integers of
the form n + b for some b € B. Since B is nonempty, so is C.. Also, b € B C A implies b > —n, and
therefore ¢ = n + b € C implies that ¢ > 0. By the well ordering of the nonnegative integers we
know that the (nonempty) set C has a least element m, and by the construction of C' we know that
m —n € B. We claim it is the least element of B. Given b € B we know that b+ n € C, and by
minimality of m se know that m < n — b; subtract n from both sides to conclude that m —n < b.=

V.2: Finite induction and recursion

FEzxercises to work

1. Let P, be the statement that k? 4+ 5k is even. Then Py is true because the value of the
k? + 5k at k = 0 is zero, which is even. Suppose now that P,, is true; we then need to show that
(n+1)? +5(n+ 1) is even. If we expand the latter we obtain

n*+2n+1+5n+5 = (n®+5n)+ (2n +6)

and by the induction hypothesis we know that n? 4 5n is even. However, we also know that 2n + 6
is even, and therefore the displayed quantity is expressed as a sum of two even integers and hence
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must be even itself. Thus we have shown that for all n we have P, — P, 1, and this means
that the statement in the exercise is true for all nonnegative integers k.m

2. Let P,, be the statement of the exercise for the nonnegative integer n. Strictly speaking
there are two parts to this, one of which is to prove the formula for 1 + --- + n and the other of
which is to do the same for 13 4+ --- +n3. Both statements are trivially true if n = 0, and we need
to show that if P,, is true then P,,, 1 is also true.

We begin with the simpler formula, where we have

nZ+n n2+3n+2 n+1)(n+2
1+ - +n+(n+1) = 5 +(n+1) = — = (n+Dn+2) )2( )

which shows that the first part of P, is true. In the other case we have

n?+n 2

P+ 40’4+ (n+1)? = < 5 > +(n+1)?° =
(n*+2n° +n?) + (4n® + 1202 +12n+4)  n*4+6n°+ 130+ 12n+4)
4 B 4 B

MP42n+ D)2 +4n+4)  +1)2(n+2?  [((a+Dn+2))°
4 B 4 B 2
thus completing the derivation of P, 41 from P, .=
3. If n = 1 the formula is true because 1! = 1 = 1'. Suppose now that we have n! < n" for

some n > 1; we want to prove that (n+1)! < (n+ 1)+, — Since (n + 1)! = n!(n + 1), we must
have
(n+1)! = nl(n+1) <n(n+1) < (n+D)"(n+1) = (n+1)"Y

as required. To be more precise, let P,, be the compound statement in the exercise. Then the
preceding shows that P, implies Py, and our argument shows that if P,, is true for n > 2 then
n! < n™ implies (n + 1)! < (n + 1) which is the conclusion of P, ;.

4. As noted in the hint, the cases n = 1 and n > 2 must be handled separately. For a
sequence f of length one, we simply take H(f) = 1, while for sequences of length n > 1 we take

H(f)= fo-1+ frnom

5. The crucial point is to understand how much of the payment of P units goes towards
principal and how much towards interest. The interest owed at time n, which is computed using the
balance after the previous payment at time n — 1, is equal to r x,,_1, so this means that P —r x, _1
goes to the principal and therefore we have

Tp = Xp1 — (P—rzy_y) = (1+7)xH1 — P m

Although the problem does not ask for it, we shall also derive the formula for finding the value
of P such that the loan will be paid off after M equal payments of P units. One can use the
recursive relation to find an explicit formula for x, in terms of L, r and P:

o= 24 (L47) {5—5}

T r



The condition that x; should equal zero leads to the following expression for P in terms of L, r
and M:
rL(1+7)M

P
(14 r)M+L—1

If one intends to use this formula to work out a specific problem in computing payments, it is
important to remember that the payments are usually monthly, so M denotes the number of
months and r denotes the monthly interest rate (converted from a percentage to a decimal fraction,
which means dividing the monthly percentage rate by 100).m

6. Following the hint, let A = {0} U o[N]. We need to show that 0 € A and if a € A then
o(a) € A. Then the third Peano axiom will imply that A = N, and since A has only one element
that is not the successor of anything else, the same must be true for N.

The condition 0 € A iis true by definition. If a € A, then either a = 0 or a = o(b) for some
b € N. In either case o(a) € o[N] C A, so this proves the second condition in the third Peano
axiom.m

V.3 : Finite sets

FExercises to work

1. We prove this by induction on |A|. If [A] = 1, then A = {a} for some a and the
result is true by assumption (2). Suppose the result is true for finite sets with n elements and that
|Al]=n+1. Let a € A and set Ag = A—{a};let Co = CNAyx B, and let C' = CN{a} x B. We
then have C' = Cy U C’ and Cy N C’" = (. Furthermore, assumption (2) implies that |C’| = k and
|Co| = |Ag| - k. Therefore we have

IC| = |Col + [Ci] = [Ao|-k + k =

(lAo[+1) -k = [A]-k
which completes the derivation of the inductive step.m
IMPORTANT GENERALIZATION.

One can view an ordered pair as a sequence of length 2; with this interpretation, the conclusion
of the exercise extends to sequences of arbitrary finite length as follows:

Informal version. Suppose that we are given a sequence of k choices ch; such that at
each step the number n; of alternatives does not depend upon the previous choices. Then
the total number of possible choice sequences is ny - ... - ng.

Formal version. Let S be a set of sequences of length k whose terms lie in some finite
set A, and for each i such that 1 < i < n let S; be the set of all restrictions of sequences
in S to {1, --- ,i}; set So = (0. Suppose that for each i such that 0 < i < n, and each
y € S; the number N(y) of sequences x € S;1 restricting to y is independent of y, and
denote this number by n; 1. Then the number |S| of sequences in S is equal to the product
ny e ng.



This principle plays an important role in the proofs of many formulas (for example, showing

that the number of permutations of {1, --- ,n} is n! and the fact that the number of subsets of
{1, --+ ,n} with exactly r elements is equal to
n\ n!
r)  (n—r)rl’
2. We can fit this example into the setting of the previous exercise with A = B =

{1,2,3,4,5,6,7,8,9,10}. In this case the number k£ = 5, which is the number of integers that are
odd 1f a is even and the number that are odd if k£ is odd. Therefore the total number of pairs in
this case is equal to 10 x 5 = 50.m

3. By the theorem, there are as many Boolean subalgebras as there are partitions of
{1,2,3,4} into disjoint subsets. The standard way to count partitions is to do so in decreasing
order of the sizes of the subsets. We then have the following:

e There is one partition containing one subset of 4 elements.

e There are three partitions containing one subset of 3 elements and one of 1 element.
e There are three partitions containing two subsets of 2 elements.

e There are six partitions containing one subset of 2 elements and two of 1 element.

e There are four partitions containing four subsets of 1 element.

Thus the total number of partitions is 1 + 4 + 3 + 6 4+ 4 = 18. Furthermore, the number with two
atomic elements is the number of partitions into two subsets, which are all those of the second and
third types. Thus there are exactly seven subalgebras that have precisely two atomic elements.m

V.4: The real numbers

FExercises to work

1. Suppose that 2y and x; are the two elements of the set S and they are indexed so that
Tg < x1. We claim that x is the least upper bound of S and x is the greatest lower bound of S.
The fiact that they are upper bounds follows because y € S implies ¢ < y < z1. Suppose that U
is another upper bound for S. Then x; € S implies that 1 < U, which is precisely the condition
for 1 to be the least upper bound. Similarly, if L is a lower bound for S, then L < x, which is
precisely the condition for zg to be the greatest lower bound for S.m

2. The least upper bound of A U B is the larger of u and v. To prove this, let w be the
larger of uw and v. Then x € AU B implies x € A or z € B, which in turn implies x < u or x < v.
In either case we have x < w, so w is an upper bound for AU B.

To see it is the least upper bound for A U B, suppose we have z < x; we need to show that
z cannot be an upper bound for the union. Suppose that w = u. Then by the definition of least
upper bound we know that there is some a € A such that a > z. Since z is not an upper bound
for A it cannot be an upper bound for the larger set AU B. Likewise, if z = v then there is some
b € B such that b > z. Since z is not an upper bound for B it cannot be an upper bound for the
larger set A U B. Therefore in either case we know that z cannot be an upper bound for AU B,
and hence w must be a least upper bound for AU B.u
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3. First of all, 0 is greater than every negative number, so 0 is an upper bound for A.
Suppose now that a < 0. Then a cannot be an upper bound for A because we have a < %a < 05

thus if U is an upper bound for A then U > 0, and hence 0 must be the least upper bound for A.m

4. Since z is the least upper bound for A, we know that for each positive integer n the
number a — % is not an upper bound, and hence there is some a,, € A such that a— = <a,<a.
We claim lim,,_,o a, = a. Let ¢ > 0, and choose N such that n > N 1mphes = < €. Then n>N
implies

a > a, > a4 — — =>a — > a — €

1
n o N

so that |a, — a| < € as required.m

V.5: Familiar properties of the real numbers

FEzxercises to work

1. There are many ways of doing this problem. For example, we can start by saying that
there is a rational number 7y such that a < ry < b and another rational number r; such that
ro < r1 < b. An entire sequence of numbers r, for n > 1 such that r, < --- < ry < r; may be

defined by setting
T —To

r = To +

or alternatively one can take a sequence such that a <rg<ri <ro < - <r, < -+ <bm

2. Each case will be handled separately. It is probably worthwhile to begin by observing
that we can write 1 in “base 16 decimal-like” notation as 0.FFFFFFF...ggx , because we have the
following geometric series identity which works for all n > 1:

in—l <1>k _ n;1'1_(11/n) _

k=1

In the discussion below we shall always denote hexadecimal expansions by appending the subscript
“aex” as above; for example, 14ggx is equal to 20 (in base 10).

The easy cases. If k divides 16 evenly, then just as for decimals the expansion is given by 16/k
in the first position and zeros afterwards, or equivalently by (16/k) — 1 in the first position and F’s
afterwards. Thus we have that § = 0.800000...ggx, ; = 0.400000...gEx, and 3 = 0.200000...HEX -

The case % The algorithm tells us exactly how to proceed. Start with 16 = x1 - 3 + y1,
16y1 = x2 -3+ y2, and so forth, obtaining 16 =5-3+1, 16 = 16-1 = 5-3+ 1, and similarly for every

other value. The terms in the expansion are the z;’s, so this means that % = 0.5555555555...HEX -

The case % In this case the algorithm yields 16 = 3-541, 16 = 16-1 = 3-5+1, and similarly
for every other value, so this means that % =0.3333333333...HEX -

The case %. In this case the algorithm yields 16 = 2-6+4, 16-4 =64 = 10-6 + 1, and
similarly for every other value, so this means that % = 0.2AAAAAAAAA. gEX.

The case % In this case the algorithm yields 16 = 2-7+2, 32 = 16-2 = 4 -7 4 4,
64=16-4=9-74+1,16 =2 -7+ 2, and one has a periodic pattern of length 3 for the remaining
values, so this means that % = 0.249249249249.. gEX -
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The case %. In this case the algorithm yields 16 = 1-9+4+ 7, 112 = 16 -7 = 12 -9 4 4,
64=16-4=7-941,16 =1-9+ 7, and one has a periodic pattern of length 3 for the remaining

values, so this means that % =0.1C71C71C71C7...HEX -

The case . In this case the algorithm yields 16 = 1-10 46, 16 -6 = 96 = 6 - 10 4 6, and
10

similarly for every other value, so this means that % = 0.1999999999...gEx -

This completes the list of examples in the exercise, but of course one could continue to find

hexadecimal expansions for all of the fractions %.-

3. The point of this exercise is that z has an eventually periodic decimal expansion if and
only if f(x) does.

Suppose that x is rational and that it has a decimal expansion that is eventually periodic with
period p; in other words, there is some N such that for each n > N the decimal digits =, for x
satisfy x,, = #p4p. What can one say about the decimal digits y,, for y = f(z) if n > 2N? If n is
even then y, = 0 and thus we trivially have y,2, = 0 = y,,, while if n is an odd number of the
form 2m — 1 then 2m — 1 > 2N implies m > N, so that y2m—1 = T = Tyyp = Y2p+2m—1. Thus
the decimal expansion of y = f(x) is eventually periodic, so that f(x) is rational if x is rational.

Suppose now that f(z) is rational. Since we know that f(0) = 0, we need only consider the
case where f(z) and x are both nonzero. — The conclusion is also trivial if f(z) is a finite decimal
fraction (in which case the same is true for z), so let us also assume that there are infinitely
many decimal digits that are nonzero for x. Since only the odd entries are nonzero, it follows
that the period of the tail end of the expansion must be even (this uses the fact that there are
infinitely many nonzero terms so that there is a nonzero entry in the repeating part of the decimal
exapansion). Thus if we let y = f(x) as before, then we have some 2N and p such that m > N
implies yopt2m—1 = Yam—1. Thus for all m sufficiently large we also have x,,, = z,, as well.

4. Follow the hints as usual. We want to apply the summation formulas
DRTIES 9D ST 3D 3
i,j>1 i1 j>1 Jj21 i>1

where a; ; = 21-(43) if § < j and 0 otherwise. If we sum first over j holding i fixed and then sum
over 7, we find that the sum of this series is equal to the Swineshead series

k
2. 5
E>1

as indicated in the problem. What happens if we sum over ¢ holding j fixed and then sum over 57
We obtain
j>1 i>1 i>1

which is the value that Swineshead and Oresme computed in the 14*" century.s
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VI. Infinite constructions in set theory
VI.1: Indexed families and set - theoretic operations

FEzxercises to work

1. We first verify the statement about unions. Suppose that x € Ujc; A;, and choose
j(0) € J such that z € Aj)- Then the inclusion hypothesis implies that z € C}(g), which in turn
implies that x € Ujcs C;. Therefore Uje; A; is a subset of Ujc; Cj.

We now verify the statement about intersections. Suppose that x € Njec; A;, so that x € A;
for every j € J. The inclusion hypothesis now implies that x € C; for every j € J, and therefore
we must have € Njey C;j. Therefore Njc; Aj is a subset of Njc; C;m

2. We prove the assertions in order. Suppose that x € S —Ujec; A;. Then x € Ujc; Aj,
or equivalently there is no j such that x € A;. Therefore we have = ¢ A; for all j, and since x € S
this means € § — A; for all j. The latter in turn implies that x € N;c; S — A;, and therefore we
haveS—Ujej A;j C Njeg S—A,.

Conversely, if z € Njes S — Aj, then x € A; for each j, so that there is no j satisfying x € A;
and hence x € Ujc; A;. Since x € S, it follows that x € S —U;c; A;, and this plus the conclusion
of the previous paragraph establishes one of the De Morgan laws.

We now turn to the other De Morgan law. Suppose that x € S — Njc; A;. Then there
is some j(0) € J such that x & Aj(), and accordingly we have x € S — Aj). Now the latter
set is a subset of the union Ujc; S — A; by the definition of this union, and therefore we have
S—(ﬂjeJ Aj) C Ujeg S—A;.

Conversely, if z € Ujc; S—Aj, then there is some j(0) such that x € S—A; gy, so that x ¢ A o).
The last statement implies that = ¢ Njc; A;, and since z € S it follows that x € S — (Ncs 4;).
As in the discussion of the first De Morgan law, this plus the conclusion of the previous paragraph
establishes the second De Morgan law.m

3. (a) Suppose first that « € (U; 4;) N (U; B;). Then one can find indices i(0) and j(0) such
that z € A;) and x € Bj(g), and hence x € A;yNBj(g), so that x € N; ; (A; U B;). — Conversely,
if z lies in the latter set, then one can find indices i(0) and j(0) such that x € A;) N Bj(y). Since
Aj) is a subset of U; A; and Bj gy is a subset of U; By, it follows that the intersection A;y N Bj(o)
is a subset of (U; 4;) N (U; Bj). This proves the first identity in (a).m

We now turn to the second identity. Suppose that = € (N; A;) U (N; Bj). Then either
x € N; A; or x € N; Bj. In the first case we have x € A; for all < and in the second we have x € B;
for all j. Therefore in both cases we have z € A; U B; for all i and j., so that x € N; ; (4; U Bj).
— Conversely, if x lies in the latter set, then for each ordered pair (i,j) we either have x € A; or
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x € Bj. It suffices to show that if x & N; A;, then we must have x € N; B;. However, if x does
not belong to the first intersection, then for some i(0) we have x & A;(), and thus for all ordered
pairs (i(0),j ) we must have x € B;. The last statement implies that € N; B;, which is what we
needed to verify.m

(b) Suppose that x € Ay for some k, and choose j such that & € I;. We then have z €
U {A; | ¢ € I;}, which in turn implies

xEU UAZ'

jeJ i€l

Conversely, if = belongs to the latter set, then for some j we have x € U {A; | i € I;}, which in
turn means that = € A; for some i, so that € Uy Aj. This proves the first identity in (b).m

We now turn to the second identity. Suppose that x € Ay for all k. Then for each j we have
zen{A; | i€ I}, and hence we also have

xem mAi

jeJ i€l

Conversely, if  belongs to the latter set, then for all j we have x € N {A; | i € I;}, which in turn
means that z € A; for all i, so that © € N Ay. This proves the second identity in (b).m

4. (a) Suppose first that (z,y) € (U; 4;) x (U; B;). Then one can find some indices i(0)
and j(0) such that x € A, and y € Bj(o). Therefore we have (z,y) € A;) X Bj(). Since the latter
is contained in U; ; (A4; x B;) it follows that (x,y) € U; ; (A; x B;). — Conversely, it (z,y) belongs
to the latter set, then one can find some indices i(0) and j(0) such that (z,y) € A;) X Bj(), and
therefore it follows that (z,y) belongs to (N; A;) x (N; B;). This proves the first identity in (a).m

We now turn to the second identity. Suppose that (z,y) € (N; 4;) x (N; Bj). Then for
all ¢ and j we have x € A; and y € Bj, so that x € A; x B; for all ¢ and j, and hence we have
(z,y) € N, (A; x Bj). — Conversely, if (z,y) belongs to the latter set, then for each ¢ and j we
know that x € A; and y € Bj, so that (z,y) € (N; A;) x (N; Bj). This proves the second identity
in (a)m

(b) First of all, we need to show that for each j we have N; X; C X; C U; X;. If y lies in the
intersection on the left hand side, then it lies in each X; and in particular it lies in X}, so the first
inclusion is true. Likewise, if y € X; then trivially we have f € X; for some 7 and hence y € U; Xj.

To complete the second part of the problem, we need to show that if the sets U and V satisfy
U c X; c V

for every j, then we have U C N; X; and U; X; C V. — If y € U, then by hypothesis we have
y € X; for all 7 and since the intersection is defined by this condition we have U C N; X;. Also, if
y € U; X;, then for some j we have y € X;. By assumption X; C V, and therefore we also have
y € V. But this means that every element of U; X, is also in V, so that X; C V as required.s



V1.2 : Infinite Cartesian products

FEzxercises to work

1. The main idea is to apply the Universal Mapping Property:

Let {A, | a € A} be a family of nonempty sets, and suppose that we are given data consisting
of a set P and functions hy, : P — A, such that for EVERY collection of data (S,{fs : S — Aa})
there is a unique function f : S — P such that ho°f = fo for all a. Then there is a unique 1 — 1
correspondence ® : [, Aq — P such that ho °® is projection from [[, Xo onto A, for all c.

Application to the exercise. For each k let Py denote the product of objects whose index
belongs to Ji and denote its coordinate projections by p;. The conclusions amount to saying that
there is a canonical morphism from [[, P to [[, X; that has an inverse morphism. Suppose that
we are given morphisms f; from the same set S to the various sets X;. If we gather together all
the morphisms for indices ¢ lying in a fixed subset Jj, then we obtain a unique map gx : S — Py
such that p;°cgx = f; for all i € Jy.

Let gr : [[,Pe — P be the coordinate projection. Taking the maps g that have been
constructed, one obtains a unique map F' : S — [][, Py such that ¢z °F = g; for all k. By
construction we have that p;°qy°F = f; for all i. If there is a unique map with this property, then
[1. Pr will be isomorphic to [ [, X; by the Universal Mapping Property. But suppose that 6 is any
map with this property. Once again fix k. Then p;°qi°F = p;°qi°0 = f; for all ¢ € Ji implies that
qr°F = g, 20, and since the latter holds for all k it follows that ' = 6 as required.=

2. Once again we use the Universal Mapping Property. If we are given a sequence of set-
theoretic functions f; : X; — Y;, then we obtain a corresponding set of functions f : [| j X; =Y
defined by the identities

o= fiept
where p? : [] j X; — X; is projection. Thus the Universal Mapping Property yields a unique
mapping
F:HZfz : HiXi - HzYz

such that p) °F = fF = f;°pX for each i, where 7;¥ and 7} denote the i*" coordinate projections
for [, X; and [, Y; respectively.

The assertion that F' is an identity mapping if each f; is an identity mapping follows because
from the uniqueness part of the Universal Mapping Property, for the identity mapping on the
product satisfies the displayed equation if each of the mappings f; is an identity mapping.

Finally, the assertion about composites can be verified as follows: Let H = [] ;9i° fj- Then
for each i we have
pi°H = g°fiond = giop{ °F = p{°G°F

and therefore H = G °F by the Universal Mapping Property.m

3. Follow the hint. Since each f; is a bijection we have inverse mappings g; = fj_l. By
the preceding exercise we then have

Hfj" ng = [[Gicen = [Ty = id(Hij>
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and we also have

ng ° Hfj = [l = Hid(Xj) = id(Hij)

J

so that the product of the inverses [ ; 9j is an inverse to II i fim

4. Both statements are TRUE. — To prove the first one, let u,v € Hj X, with
coordinates u; and v; respectively, and suppose that [[; f;(u) = [[; fj(v). This means that the
4t coordinates are equal for every j. But the j*" coordinates of the given elements are fi(u;) and
fj(v;) respectively. Since each f; is 1-1 it follows that u; = v; for all j, which in turn means that

u = v. Therefore Hj fj is 1-1 if each f; is 1-1.

Suppose now that each map f; is onto, and let y € [].Y; with coordinates y;. Since each f;
is onto for each j there is an element z; € X; such that f;(z;) = y;. If we take x € Hj X such

that the 5 coordinate is z; for each j, then it follows that [1; fi(x) =y and hence []; f; is onto.a

5. We shall use the following result from Unit IV: Let X and Y be sets, let ¢ : X — Y be
a function, let R be a binary relation on X, and let E be the equivalence relation generated by R.
Suppose that for all u,v € X we know that u Rv implies p(u) = ¢(v). Then for all z,y € X such
that x Ey we have p(x) = ¢(y).

To solve the problem, let R be the binary relation on B such that uBwv if and only if there is
some z € A such that u = f(z) and v = g(z), let E be the equivalence relation generated by R,
let C be the corresponding set of equivalence classes, and let p : B — C be the equivalence class
projection. By construction we have pe f(z) = peg(z) for all x € A.

Suppose now that we have a function ¢ : B — D such that ¢°f = g°g. We need to define a
function h : C'— D such that h sends the equivalence class [b] of b to ¢(b). The main problem is to
verify that h is well defined; i.e., it does not depend upon the choice of an element of b representing
a given equivalence class. If we can show that h is well defined, the it will follow that hep = g¢;
furthermore if we also have k°p = ¢, then for each ¢ € C we may write ¢ = p(b) for some b and
hence

ke) = kep(b) = q(b) = hop(d) = h(x)

so that h = k. — By the proposition quoted in the first paragraph, it suffices to show that if u Rv
then ¢(u) = ¢(v), and by definition of R this reduces to showing that for each x € A we have
g° f(x) = geg(x); this equation holds by our hypothesis on ¢, and therefore by the proposition we
know that h is well defined. As noted before, this completes the proof.m

6. First of all, we observe a consequence of the uniqueness statement. Namely, the only
maps ¢ : C — C and ¢ : E — E such that p°cp = p and ¢°v = ¢ are the identities on C' and FE
respectively.

By the universal mapping properties for coequalizers, there are unique maps H : C' — F such
that r = Hep and K : E — C such that p = Ker. It follows that r = K°He°r and p = H°K °p,
and therefore by the first sentence we conclude that H ° K and K °H are the identity mappings on
C and F respectively. As usual, this implies that both H and K are bijections.m



V1.3 : Transfinite cardinal numbers

FExercises to work

1. Let S be the set in question, and let S[n| denote the set of subsets with n elements.
It will suffice to show that each A[n] is countable, because a countable union of countable sets is
countable. In fact, since there is only one subset with no elements, we might as well assume that
n > 1.

Since S is countable it has a well-ordering. Define a map F' from S[n] to II""S — the product
of n copies of S with itself — such that the coordinates of F'(B) are the elements of B in order;
i.e., the first coordinate is the least element bg, the second is the least element of those remaining
after by is removed, and so on. This defines a 1-1 mapping into II"™S, which is a countable set.
Hence each set S[n] is countable as required.

To see the final assertion, note that if S is finite then the set P(S) of all subsets is finite, while
if S is infinite, then the set F1(S) of subsets with exactly one element is in 1-1 coorespondence
with S, and hence both F(S) and P(S) D F(S) are infinite.n

2. The equivalence class projection from S to S/FE is an onto mapping, and since S is
countable the results of Section 3 imply that S/E must also be countable.m

VI.4: Countable and uncountable sets

FEzxercises to work

1. Let A, B, C, D be sets such that |A| = «, |B| = 3, |C| =+, and |D| = ¢§. The cardinal
number inequalities imply the existence of 1-1 mappings f: A — B and g : C — D. These maps
in turn define mappings fllg: AIIC — BII D and f xg: Ax C — B x D as follows:

[fgl(a, 1) = (f(a),1)

[ng](C,Q) = (9(0)72)
[fxgl(e,b) = (f(a), g(c))

Since a +v = |[AIIC| and -y = |A x C| and similarly if 3,6, B, D replace a,, A,C the
conclusion of the problem will follow if we can verify that f Il g and f x g are both 1-1.

To see that f1Ilg is 1-1, suppose that we have two classes (u, ) and (v, j) which have the same
image under this map. By definition of f II ¢ we know that the second coordinates satisfy i = j so
that either this second coordinate is 1 and u,v € A or else this second coordinate is 2 and u,v € B.
In each case the injectivity of f and g imply that the images of (u,i) and (v,?) are the same if and
only if u = v. Therefore f Il g is injective if f and g are.

To see that f x g is 1-1, suppose that we have f x b(a,c) = f x g(a’, ). By definition of f x g
we conclude that



and since ordered pairs are determined by their coordinates the latter implies that f(a) = f(a’) and
g(c) = g(¢’). Since f and g are injective this implies that a = o’ and ¢ = ¢’ so that (a,c) = (a’, )
and hence f X g is injective if f and ¢ are.m

2. Choose A so that |[A] = a. Then A x () = () implies that - 0 = 0. Also ! is the
cardinality of the set of all functions from {1} to A, which is in 1-1 correspondence with A under
the mapping which sends f : {1} — A to the value f(1) € A. Therefore we have a! = |A| = a.
Finally, 1¢ is the cardinality of the set of all functions from A to {1}, and since there is a unique
function of this type (the function whose value at every element of A is equal to 1), it follows that
19=1m

i) Suppose that a = R or 2%°. Prove that a® = 2%. Suppose that a@ = R and 3 = 2%. Then

3. We shall split the proof into several steps.
(1)

(i) Let X be a set, and let X(X) denote the set of bijections from X to itself. Suppose that
¢ : X — Y is a bijection of sets. Prove that there is a bijection . : X(X) — X(Y) such that
©«(h) = peheop™! for all h € X(X).

(iii) Suppose that |X| = «, where a = R or 2%°. Prove that |3(X)| = a® = 2°.

Proof of (i). We shall prove the statements in the individual sentences separately. For the
first sentence, we have 2% < a“; since « - @ = « for these cardinal numbers we also have

aa S (2a)a — 2a~a — 2a

and hence the Schroder-Bernstein Theorem implies that the left and right hand sides are equal.n

IMPORTANT GENERALIZATION. This argument works for an infinite cardinal number « if
we know that o - o = a. By the results of Section VII.4 this equation holds for all infinite cardinal
numbers, and therefore it follows that the conclusion of Part (i) is true for all infinite
cardinal numbers.»

Proof of (ii). It follows immediately that the construction ®,(f) = @°fop~! defines a
mapping of function sets from F(X, X) to F(Y,Y). We need to show that it sends the subset 3(X)
to X(Y). In other words, if f is a bijection we need to check that p°fep~! is also a bijection.
But this follows immediately because the latter is a composite of bijections and a composite of
bijections is also a bijection.

Let ¥ : Y — S be the inverse of ¢. Then by the same reasoning as above we have a map
Yy @ B(Y) — X(X), and it will suffice to show that the composites 1. °p, and ¢, °v, are both
identity mappings. Consider the following chains of equations:

Viopu(f) = Yepefep oyt = grepefeyep = idxeofeiddxy = f = Identity(f)

peoi(g) = poprgepTiopTt = pogegepoy = idycgeidy = g = Identity(g)
It follows that ¢, is bijective and v, is its inverse.m

Proof of (#ii).  Assume that X is either N or R. Since ¥(X) C F(X,X) by definition, it
follows that if |X| = « then |2(X)| < a®. By the Schroder-Bernstein Theorem it will suffice to
prove the reverse inequality.

Define a map o : F(X, X) — X(X x X) so that for each v : X — X we have the following
description of o, € ¥(X x X):



[1] ou(y,0) = (y, u(y))
2] ou(y, uly)) = (y,0)
[3] ouly,z) = (y, z) otherwise.

In words, o, interchanges elements of the form (y,0) with elements of the form (y.u(y)) and
leaves everything else fixed.— Note that if X = R the mapping o, is almost never going to be
continuous. By construction each o, defines a mapping from X to itself, and in fact the composites
oy °0y are all equal to the identity map on X x X. This shows that each o, is a bijection, and in
fact each such map is equal to its own inverse.

We now need to show that ¢ is an injection. However, if o, = o, then for every y € X we
have o, (y,0) = 0,(y,0), which implies that u(y) = v(y); it follows that if o, = o, then u = v as
required.

The preceding argument shows that a® < |X(X x X)|. Since o - o = « for the sets X we
are considering, we may now apply (i) to conclude that |X(X x X)| = [3(X)]|, and therefore we
also have a® < |X(X)|. As noted previously in this exercise, we may now conclude that equality
actually holds in the latter expression. Finally, we may now apply Part (i) to see that 2% = |X(X)|
also holds.m

Determination of |[X(X)| for an arbitrary set X. More generally, it is possible to
describe |X(X)| as a function of | X| in a very straightforward manner. Not surprisingly, the finite
and transfinite cases must be handled separately.

The finite case. If X is finite and |X| = n > 0, then there is a 1-1 correspondence between
¥(X) and the symmetric group X, of permutations of {1,2, -, n}. It is well known that X,, contains
n! elements. Further information on this may be found in Section 4.3 of Rosen, and particularly
on page 321.

The transfinite — or infinite — case. The proof of the preceding exercise is valid for all infinite
sets X whose cardinal numbers satisfy |X x X| = |X]|. At one point in the argument we defined a
map using 0 € R, but in general one can carry out the construction replacing 0 by some arbitrary
fixed element zo € X. As noted above, by the results of Section VII.4 the identity | X x X| = |X]|
holds for all infinite sets, and consequently the proof implies that for every infinite set X we have
=(xX)] = 21X = [x]1¥1,

Relations between the finite and transfinite cases. There is a loose connection between the
computations for |X(X)| in the finite and transfinite cases (n! versus a®) in terms of a classical
asymptotic formula for estimating n! discovered by A. de Moivre (1667-1754) and J. Stirling (1692
1770), which is usually known as Stirling’s Formula:

|
lim#zl

n—oo  nny\/2rne"

A discussion of this formula and a relatively elementary derivation of it may be found at the
following online site:

http://en.wikipedia.org/wiki/Stirling’s _formula

The formula implies that for all large values of n the percentage error for estimating n! by the
denominator goes to 0 as n — oo. However, for several reasons it would be stretching things too
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far to assert that the results |2, | = n! and |[S(N)| = |N|NI somehow “fit together continuously”
in some precise matehamtical sense.m

4. If ¢ = |R| then we have
c <Nygrc < c-c = ¢

and therefore it is enough to show that for each nonnegative integer n the set of all subsets with n
elements has cardinality c, and likewise for the set of all countably infinite subsets.

Let n be a positive integer. As in Exercise VI1.3.1, define a map from subsets of R with n
elements into R” such that the first coordinate is the least element of the set, the second coordinate
is the smallest of the remaining elements, and so on. We can always find least elements for finite
subsets because the real numbers are linearly ordered. This shows that the cardinality of the set
of subsets with n elements is less than or equal to the cardinality of R™, which is ¢. On the other
hand, given a real number rq, it is easy to find a subset with n elements whose least element is
70, SO this gives a 1-1 mapping from R into the set of all such subsets (specifically, let the second
element be 7o + 1, etc.). Therefore the cardinality of the set of all subsets with exactly n elements
is ¢ provide n is a positive integer. Of course, if n = 0 this cardinality is 1. It then follows that the
set of all finite subsets of R has cardinality equal to Rg-c+1 =c.

To complete the proof it will suffice to show that the set D of all countably infinite subsets of
R also has cardinality c. We can define a 1-1 map from R into this set as before, sending rg to the
set of all numbers of the form r¢ + k where k is a nonnegative integer. This mapping is injective
because each set in the range has a least element and for different real numbers one obtains different
least elements.

Thus it only remains to show the cardinality of this set of subsets is less than or equal to c.

Suppose that B is a countably infinite subset of R. Then there is a 1-1 correspondence from
N to B, so we pick such a mapping hp : N — B (we are using the Aziom of Choice to do this).
We may now compose this chosen bijection with inclusion to obtain a mapping fp from N into
mapping from D to F(N,R).

If we take different subsets we obtain different mappings because their ranges are unequal, and
this means that there is a 1-1 map from D to F(N,R), so that [D| < |R|NI. Since we already
know that ¢ < |D|, everything reduces to proving that |R|INl = c. This is a consequence of the
following chain of equations:

(QNO)NO — 9RoNo  _  9No

It follows that the set of countably infinite subsets of R has the same cardinality as R itself.m

5. This is very similar to the preceding example. Let X denote the set of continuous real
valued functions on the unit interval, and let Y denote the set of functions defined at rational points
of that interval. There is a natural map from X to Y defined by restricting to the rational points of
the interval, and the statement in the exercise means that this mapping is injective. The reasoning
of the previous problem shows that |Y| = ¢ and hence that |X| < c. On the other hand it is easy
to show that ¢ < |X|; for example, we may define a 1-1 mapping from R into X sending r to the
constant function whose value at every point is equal to r. Therefore it follows that |X| = c.m



V1.6 : Transfinite induction and recursion

FEzxercises to work

1. It will be necessary to assume Axiom of Choice and Well-Ordering Principle from
Section VII.1 of the lecture notes.

Let A be the original partially ordered set, and let P be a well-ordered set which is in 1-1
correspondence with P(A4). Let AT = AU {A} and extend the partial ordering on A to A™ by
making A € AT the maximal element. We shall define a nondecreasing map f : P — AT by
transfinite recursion such that f is strictly increasing on f~1[A].

Denote the minimal element of P by 0, and define f(0) by picking a point in A using a choice
function. Suppose now that we have defined f(3) for all 5 < a; we need to define f(«). There are
two cases. If there is some z € A such that z > f(f) for all 5 < «, define f(«) by choosing such a
value of z (again, this requires a choice function). If no such value of z exists, let f(a) = A.

Let B = f[f~1[A]]; since P is well-ordered and f is strictly increasing on on f~1[A], it follows
that B is a well-ordered subset of A. Thus it will suffice to show that B is cofinal in A. Suppose
that z € A; we need to show that there is some b € B such that b > z. Assume this does not
hold for some particular choice of x. If this happens then the recursive definition yields a strictly
increasing map from P into A, and in fact the image is contained in the set of all elements less
than z. Since f is strictly increasing it follows that |P| < |A|. However, by construction we have
|P| = |P(A)| > |A|, which yields a contradiction. This means that for each x € A there must be
some b such that b > x, so that B is a cofinal well-ordered subset.m

2. Let A be the linearly ordered subset. If A is well-ordered, then the conclusion of the
exercise is true because every nonempty subset of a well-ordered set is well-ordered. — Conversely,
suppose that for each x € A the set of all strict predecessors of A is well-ordered, and let B be
a nonempty subset of A. We need to show that B has a minimal element. Let by € B; if by is a
minimal element of B, we are done. On the other hand, if by is not a minimal element and L(bo)
is the set of strict predecessors of by, then B N L(by) is nonempty, and since L(by) is well-ordered
it follows that B N L(by) has a minimal element b;. We claim that b; is a minimal element of B.
For each y € B we have y = by, y > by or y < by. In the first two cases we have y > by > by, and
in the last case we have b; < y because then y € B N L(by) and by is a minimal element of the
intersection.m

3. Let A be a well-ordered set, and let A°P denote A with the reverse ordering. If A is
infinite, then A contains a subset that has the same order type as

w = {0 <1 < 2 < 3 <4 <5b5H <6 -}

and since w°P does not have a minimal element it follows that A°P is not well-ordered. — Suppose
now that A is finite. In order to prove that A°P is well-ordered, we need to show that every
nonempty subset of A has a maximal element.

We shall prove this by induction on |A|. If |A| = 0 the statement is vacuously true. Similarly,
if |A| = 1, then A has a unique nonempty subset, and its unique element is a maximal element.
Suppose now that we know the result for |[A| = n > 1, and suppose that B is a well-ordered set
with (n+1) elements. Let 0 be the minimal element of B, and let B; = B—{0}. Given a nonempty
subset C' C B, let C; = C N By. If C; is nonempty, then by the induction hypothesis it follows
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that C; has a maximal element m. Since C' C C; U {0} and 0 < m, it follows that m is also a
maximal element of C. On the other hand, if C; = () then C' must be equal to {0} and hence 0 is
the maximal element of C'.m

VII. The Axiom of Choice and related topics

VII.1: Nonconstructive existence statements

FExercises to work

1.  Define g : B — A on f[A] by taking b € f[A] and picking ¢g(b) € A such that f(g(b)) = b,
and define g on B — f[A] by setting g(b) = z for some chosen element z € A. We need to show that
f = fege°f. By construction, if a € A, then g(f(a)) satisfies f(g(f(a))) = f(a), so the condition
f = fgf is satisfied.m

2. If |A| < |B| then there is a 1-1 mapping f : A — B, and by Exercise II1.4.13 there is a
mapping g : B — A such that gef =id4. The mapping g is onto because a € A can be written as
g(b) where b = f(a). — Conversely, if there is a surjection f : B — A, then by the Axiom of Choice
there is a function s : A — B such that s(a) € f~![{a}] for all @ € A. Tt follows that f°s(a) = a
for all a. We claim that s is 1-1; if s(u) = s(v), then u = f(s(u)) = f(s(v)) = v. Therefore we
have |A| < |B|.=

3. To see that W, N W, = 0 if ¢ # r, observe that the second coordinates of elements in
W, are all equal to r while the second coordinates of elements in W, are all equal to g. Therefore
the second coordinates of elements of W, and W, are distinct, so that W,, "W, = (). — The union
of the sets W, = Uy, Y, x {k} is equal to I}, Y}, by the definition of the latter. — For each g there
is a 1-1 correspondence between Y, and W, =Y, x {¢} sending y to (y,q)m

4. For each k we are given a bijection f} : Y — Vj; denote the respective inverses by gy.
If we define f : Iy Yy — I Vi by f(y,k) = (fx(y), k), then the map g : Il Vi — I Y} defined
by g(v, k) = (gr(v), k) satisfies feg =id and g° f = id, so that g is an inverse to f and both maps
are bijections.m

VII.2: Extending partial orderings

FExercises to work

1. The standard alphabetical ordering is a linear ordering that contains the given partial
ordering. One way to visualize this is to move the pieces of the Hasse diagram slightly so that a falls
below b, etc. — One can check this more methodically by constructing a matrix whose rows and

columns correspond to the points of the original set in alphabetical order. Saying that the usual
alphabetical ordering contains the given one amounts to saying that all ordered pairs for which
the original relation holds must lie on or above the main diagonal. The following chart indicates
this. In the latter some elements on or above the main diagonal are marked with numbers. If a
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number appears in the position (z,y), it means that xRy and there is a chain of length & such that
zRx1R -+ Rxjp = y; if nothing appears, then no such chain exists.

a b c d e f g h i J k l m
a 0 1 2 3 3 4 4
b 0 1 1 2 2 3 3 4 4
c 0 1 2 3 4 4
d 0 1 1 2 2 3 3
e 0 1 2 2 3 3
f 0 1 2 3 3
g 0 1 2 2
h 0 1 1 2 2
i 0 1 2
j 1
k 0 1 1
l 0
m 0
2. The usual ordering works because if @ and b are positive integers such that a divides b,
then a < b.m
3. One way of finding a suitable linear ordering is to draw a Hasse diagram as in Exercise

1. The file hasse-VII-2-3.JPG in the online directory depicts one such possibility; namely, the
linear ordering given by the following chain:

A < G < B <L < C < H< D < M < K < FEF < F

As before, one way to visualize this is to move the pieces of the Hasse diagram slightly. More
methodically, this can be checked by constructing a matrix whose rows and columns correspond to
the points of the original set in the order listed above. Saying that the new linear ordering contains
the given partial ordering amounts to saying that all ordered pairs for which the original relation
holds must lie on or above the main diagonal.

Here is the chart which corresponds to the one in Exercise 1; the notation for the entries of
the chart is the same as for the earlier exercise.

A G B L C H D M K E F
A 0 1 1 1 2 2 3 2 3 4 3
G 0 1 1 2 3 3 4
B 0 1 2 3 4
L 0 1 2
C 0 1 2 3
H 0 1 1 2 2
D 1 2
M 0 1
K 0 1
E 0 1
F 0
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4. The main thing to do is to order the subsets so that the subsets with p elements come
before the subsets with ¢ elements if p < g. For example, this can be done as follows:

D < {1} < {2} < {3} < {1,2} < {1,3} < {2,3} < {1,2,3}

One interesting exercise might be to determine exactly how many linear orderings contain the given
partial ordering.m

5. This is similar to Exercise 1. Once again, the standard alphabetical ordering is a linear
ordering that contains the given partial ordering, and one way to visualize this is to move the pieces
of the Hasse diagram slightly so that a falls below b, etc. — Once again, it is possible to check
this more methodically by constructing a matrix whose rows and columns as in Exercise 1. Here is
what one obtains for the exercise we are now considering:

a b c d e f g h 1 j k l
a 0 1 2 3 4
b 0 1 1 2 2 3 3 4
c 0 1 1 2 3 3 4
d 0 1 2 3 3 4
e 0 1 2 3
f 0 1 2 2 3
g 0 1 2 2 3
h 0 1 2
i 0 1 1 2
Ji 0 1
k 0 1
l 0

VII.3: Equivalence proofs

Ezercises to work

1. Let F be a (nonempty) family of subsets of A of finite character. We want to apply
Zorn’s Lemma to this family.

In order to do so, we need to show that linearly ordered subsets of F have upper bounds in
F. Suppose that L C F' is a linearly ordered subfamily consisting of the sets L,. We claim that
M = U,L, also belongs to F, and we shall prove this using the finite character assumption.

Suppose that C' C M is finite with elements ¢; ,--- ,c;. Then we can find L; € L such that
c; € Lj for all j. Given any finite subset of a linearly ordered set, it is always possible to find a
maximal element; applying this to the present situation, we can find some m such that L,, contains
L; for all j. It follows that C' C L, so the finite character assumption implies that C' € F. Thus
we have shown that every finite subset of M belongs to F', and since the latter has finite character
it follows that M itself belongs to F. As noted before, one can now apply Zorn’s Lemma to find a
maximal subset in F.»
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2. The hypotheses should have included an assumption that all the subsets in F are
nonempty (the conclusion makes no sense if A is the empty set). — Let P, (S) be the set of all
nonempty subsets of S, and let ¢ : P (S) — S be a choice function on P, (S). Let C' C S be the
image of ¢|F. Suppose now that A C F. Then we know that c¢(a) € C' N A. On the other hand, if
x € CN A, then z = ¢(b) for some subset B, and it follows that x € B as well. Since AN B = if
A # B (this is the condition on F), it follows that x must be equal to ¢(a), and therefore we know
that CNA={c(a)}m

VII.4: Additional consequences

FEzxercises to work

1. Once again we shall follow the hint, starting by choosing X; and Y such that | X;| = «a;
and |Y;| = ;. We need to prove that there is no surjection from [[, X; to [[, ¥;. In other words,
given an injective mapping f : [[, X; — [[, Yi, we need to find a point in the codomain which
does not lie in the image of f.

For each i let h; be the composite

Xi—’HXi—>HYJ‘—’Yi
j j

where the first map is the standard injection of X; into the disjoint union and the last map is the
projection onto Y;. The cardinality inequality implies that h; cannot be surjective, so there is some
y; € Y; which does not lie in the image of h;. Let y € HZ Y; be the element whose coordinates are
given by the corresponding elements y;.

However, if y did lie in this image, then for some k in the indexing set J the element y would
be the image of an element coming from Xj. This would mean that the coordinate y; would be
equal to hy(z), where € X}, and the image of x in I1;X; maps to y. Since y; does not lie in the
image of hj by construction, it follows that y cannot lie in the image of f. Therefore we know that

Zai 7 Hﬂz‘

and by the linear ordering property for cardinal numbers it follows that the number on the left
hand side is strictly less than the number on the right hand side.m

2. Under the conditions of this exercise one can prove the following weaker inequality:
Z a; < H Bi
i i

PROOF. As suggested by the hint, the first step is to note that if « is an infinite cardinal number,
then we have

because a 4+ Vg = « for every infinite cardinal number, so that « + 1 = « also holds.

As in the preceding exercise, choose sets X; and Y; such that |X;| = a; and |Y;| = ;. As
elsewhere, we let 0(C') = C'U{C} and use the fact that C ¢ C to conclude that o(C) is given by C
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plus some point which does not lie in C'. Since all cardinal numbers in sight are infinite, it follows
that for all i the sets o(X;) amd o(Y;) have the same cardinalities as X; and Y; respectively. The
assumption that «; < §; for all ¢ implies that we have injections g; : X; — Y;.

We shall now define a mapping

]l ox) — I o)
J J

such that on the image of each X; the map takes the point corresponding to x € X; to the point

in Hj Y; whose j*® coordinate equals g;(z) if j = i and X if j # i. Since the images of X, and

X, are disjoint if u # v, it follows that we obtain a well defined function in this manner.

It will suffice to prove that F'is injective. Suppose that F'(p) = F(q). By definition, for all but
one choice of indexing variable, the k' coordinate of F(p) is equal to the extra point X} € o(X4),
and a similar statement holds for F'(q). Therefore the exceptional coordinate is the same for both
p and gq. However, if £ is this exceptional coordinate, then by construction p and ¢ both lie in the
image of X,. The latter implies that F(p) = F(q) if and only if g,(p) = ge(q). Since gy is injective,
it follows that p = q. Therefore F' is 1-1 as required.m

3. 9i) Let A, B,C be sets such that |A| = «, |B| = 3, and |C| = 7. The condition o < (3
means there is an injection j : A — B. Define an associated map of function sets

j# :F(C,A) — F(C,B)
by the formula j4(f) = j°f. The assertion about cardinal numbers will follow if we can prove that
J# 1s injective.

Suppose that fi, fo € F(C, A) satisfy jx(f1) = jg(f2). Then je fi = jeo fo, so that j(fi(z)) =
j(f2(x)) for all x € C. Since j is injective, this means that fi(z) = fo(x) for all x € C, which in
turn implies that f; = fo. Therefore the map jx is injective as required.m

(77) One way to do this is to start with the special cases where o and [ are (finite) powers of
2. More precisely, if 5 = 2" for some k > 1 we shall prove that 57 = 27.

By the transfinite laws of exponents the left hand side is equal to 27, and since k - v = v for
every positive integer k and transfinite cardinal -, the desired conclusion follows immediately when
0 is a positive integral power of 2.

For general choices of 3 > 2 we can find powers of 2 such that
2 = B < B < Bo= 20

and if we combine this with the first part of the exercise, we see that

27 < BY < B < B = 2

where the first and last equations follow from the discussion in the preceding paragraph. We can
now use the Schroder-Bernstein Theorem to conclude that 7 = 27.»

4. Suppose that we have an infinite non-limit ordinal p 4+ 1 and a 1-1 correspondence
between the corresponding set S[u + 1] and some other set X. Then we have the cardinal number
identities

X[ = [Slp+1] = [S] + 1 = [S[4]]
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so that there is a 1-1 correspondence between X and the elements of the ordinal number u.
Therefore 4 + 1 cannot be the least ordinal for which there is a 1-1 correspondence, and it follows
that if A\g is the minimum such ordinal, then A\g must be a limit ordinal.m

5. All finite ordinals are cardinal numbers, and the first infinite ordinal w is equal to Ng.
Thus the next infinite ordinal, namely w + 1, is the first ordinal number that is not also a cardinal
number.m

6. We shall solve this in a sequence of steps:
First, we shall use a previous exercise to prove the result when |A| < 2%,

Let D(A) denote the countably infinite subsets. Since A contains a countably infinite subset
B, it follows that 2% = |D(B)| < |D(A)|, and since there is an injective mapping from A to R it
also follows that |D(A)| < D(R)| = 2%, Therefore the number of countably infinite subsets is 2%°
by the Schroder-Bernstein Theorem.

From this point on assume that |A| > 2%, Next, we shall prove that the set of countably
infinite subsets is in 1 — 1 correspondence with the set AN of functions from N to A as
follows: Given a countably infinite subset E and a specific 1 — 1 correspondence from N
onto E we shall obtain a map from N to A that turns out to be 1 — 1.

Since the image of the map associated to a subset B is equal to B by construction, it follows
that different subsets determine functions with different images. Thus the functions must also be
different.

By the Schréder-Bernstein Theorem it will be enough to define a map from AN to count-
ably infinite subsets of A. There is a 1 — 1 map from such functions to countable subsets
of N x A given by taking the graphs of functions. We shall use this to define the desired
map to countable subsets of A7 A comparison of |A| and |N x A| will be helpful here.

Since A is infinite, the rules for transfinite cardinal arithmetic imply that |A| = [N x A|. Thus
it is also enough to prove that the number of countably infinite subsets of N x A is at least as large
as the cardinality of AN. But given two functions from N to A, their images are distinct countably
infinite subsets of the product N x A. Note that the graphs are always infinite because for each
n € N we have a point in N x A whose first coordinate is equal to n.

Finally, we shall use a modified version of the Zorn’s Lemma argument proving o -« = «
for infinite cardinals « to prove that o = «. Specifically, we shall consider the collection
of all pairs (B, ) consisting of B C A satisfying |B| > 2% and a bijection ¢ : BN — B,
with a partial ordering such that (B, ) < (D,%) if and only if B C D and ¢ = ¢ on BN.
We may use the previously established fact that 2¢ = c© (where ¢ = 2%0) from the proof
of Exercise rm V1.4.3 to show this set is nonempty.

By assumption A has a subset B such that |B| = |R|, and we know there is a 1-1 correspon-
dence between R and RN by the earlier exercise.

We shall verify that Zorn’s Lemma applies and hence there is a maximal pair, say (B, p).

Given a linearly ordered collection (B, @), we need to show that their union belongs to
the given collection. Let B* = UB,; then it follows immediately that one obtains a well defined
mapping ¢* : (B*)N — B* from the mappings ¢, so one needs to check that this map is bijective.
To see it is injective, suppose x,y € (B*)N. Then there is some « such that z,y € (B,)Y, and
©*(x) = ¢*(y) implies v, (z) = @a(y). Since ¢, is injective, this means z —y. To see that ¢* is
surjective, let z € B*, so that z € B, for some « and hence lies in the image of ¢, which means it
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also lies in the image of ¢*. Thus we have shown that in our partially ordered set, every linearly
ordered subset has an upper bound, and this means that Zorn’s Lemma applies.

If |B| = |A| we are done, so suppose instead that |B| < |A|. In this case we shall show
there is some C C A such that C C A — B and |C| = |B].

If this were false then the cardinality of every subset of A — B would be strictly less than |B],
and in particular |A — B| < |A|, so that |A| would be less than |B|, which is less than |A|. This
contradiction shows that there must be some subset of A — B whose cardinality is equal to |B|. In
fact, one has |A — B| = |A| > |B| in our situation, but we shall not need the full strength of this
conclusion.

We now explain why (B U C)N can be written as a union of pairwise disjoint subsets Sy,
where Y runs over all subsets of N such that a € Sy if and only ifa € B for k € Y and
ay € C otherwise. We shall show that each such set in 1-1 correspondence with BN and

CcN.

When we write the product as a union of the pairwise disjoint subsets Sy, we are merely
sorting the elements of the product into subsets depending upon which coordinates lie in B and
which lie in C. Since B and C are disjoint, these two properties are mutually exclusive. Each of
the sets in question is a product for which every factor is either B or C. Therefore all the factors
are in 1-1 correspondence with both B and C, and it follows (from an exercise in Section V.1) that
every set Sy is in 1-1 correspondence with BN and CN

If P (N) denotes the proper subsets of N, we shall construct a bijection from P1(IN) x C
to C.

The set P1(N) is obtained from the entire power set P(IN) by deleting one subset, and since
we are working with infinite sets the cardinalities of P1(IN) and P(IN) are equal. Since |B| = |C| >
|P(IN)|, it follows that |P1(N) x C| = |P(N) x C| = |C|.

We shall show there is a bijection from (BUC)N to BUC sending Sy = BN to B by the
maximal map and sending the other sets Sy to C' by the composites of Sy — {Y} x C
and P1(N) x C — C.

It is only necessary to define the bijection on the pieces. The assertion gives the definition on
Sn = BN, and it describes the map on the remaining pieces as well. We need to check this map
is bijective. It will suffice to show that the partial composite Uy xn Sy — P1(IN) x C is bijective
because the total composite sends the codomain to C', which is disjoint from B.

By construction the map sends the pairwise disjoint subsets Sy into the pairwise disjoint
subsets {Y'} x C, so the proof of the bijectivity assertion reduces to verifying the latter for each of
the pieces we have described. But on these pieces the map is a bijection by construction.

We claim this a contradiction, and we shall determine the source of the contradiction.

We have constructed a bijection from (B U C)N to B U C which properly contains a maximal
bijection. The problem arose in our assumption that |B| was strictly less than |A|, so the latter
must be false and we must have |B| = |A]. As noted before, this proves the identity |AN| = |A]
when |A| > |R| and thus also completes the proof of the exercise.m

7. Since every set can be well-ordered, this is true for R in particular. Therefore the set of
all uncountable ordinals is nonempty, so it must contain a least element, which we are calling A,
here.
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To prove the assertion about least upper bounds, we use the standard von Neumann model for
the ordinals (ordered by a@ < 3 <= « € [3). Suppose that we have a countable family of ordinals
o € Aq and we consider the union C' of all ordinals § such that 8 < «a; for some k. Now each ay
is countable, si this means that C' is countable. By construction, if v < 3 for some 8 € C, then
v € C. Now A; — C cannot be countable since C is countable but A is not. Therefore Ay — C is
nonempty and as such has a least element. By a previous sentence we know that this least element
do must be strictly greater than every element of C' and hence d¢ is an upper bound for the set of
all ordinals «y.

To conclude we must find a least upper bound for this set of ordinals. Suppose that ¢ is not
a least upper bound. Then there is some d; < Jy that is also an upper bound. We claim that d;
must be a least upper bound. By construction of dg we know that anything strictly less than dq
is not greater than every element of C. Hence there is some « € C such that §; < v < dg. Now
v <y, for some m and by the defining properties of §g we also have §; < au, < dg. On the other
hand, since d; is an upper bound we also have the reverse inequality «.,, < d; so that equality must
hold. Thus we have shown that «,, > «4 for all k, which means that «,, must be the least upper
bound for the original set of ordinals.m

Postscript. 1In fact, if dg is not the least upper bound, then we have g = «,,, + 1 because g
is the least element that is greater than each of the elements in C'.»

8. We shall need the following elementary fact about linearly ordered sets:

LEMMA. IfY is a linearly ordered set and yy, -+ ,yn, € Y, then there is some k such that
Yy >y, for all j.

Proof. This is trivial if n = 1; assume it is true for n = m, suppose we are given
Y1, o yYm+1 € Y, and let Yo =Y — {y;m41}. Then by the induction hypothesis there is some
q such that y, > y; for j < m. Since Y is linearly ordered we know that either y, < y,,41 or
Ym+1 = Yq. In the first case it follows that y,,11 > y; for all 7 < m+1, and in the second it follows
that y, > y; forall j <m +1.m

Solution to the exercise. Let F' be a family of subsets of some set S with the finite intersection
property, and let G be the set of all families G of subsets of S such that /' C G and G has the
finite intersection property; then G is partially ordered with respect to inclusion. The proof of the
statement in the exercise reduces to showing that the hypothesis in Zorn’s Lemma is true for G.

Let £ be a nonempty linearly ordered subset of G, and let L* = U{L € L}. Clearly L C L* for
all L € L; we claim that L* € G; i.e., FF C L* and L* has the finite intersection property. The first
statement is clear since F' is contained in every L € L. To prove the second, suppose we are given

Ay, -+ A, € L*. For each j there is some L; € £ such that A; € L;. Since £ is linearly ordered,
the lemma shows there is some ¢ such that L; C L, for all j. Therefore we have Ay, --- , A, € Lg,
and since L, has the finite intersection property we conclude that N; A; # 0. — We have now

shown that G is a partially ordered set in which linearly ordered subsets have upper bounds, and
therefore G has a maximal element G* by Zorn’s Lemma. By construction G* is a maximal family
of subsets with the finite intersection property such that I C G*.m

Further comment. In many uses of Zorn’s Lemma, it is important to understand what maxi-
mality implies for a set H which properly contains the maximal set G*. In this problem, it means
that one can find a finite collection of subsets B; in H such that N; B; = (. Here are two other
facts about the maximal family G* in the exercise that are true: (i) The family G* is closed under
finite intersections. (i) If we are given A € G* and C' C S such that A C C, then C € G*. — Both
of these follow because G* U {C} has the finite intersection property; writing up this argument in
detail is left to the reader.m
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Hasse diagram for Exercise VI1.2.3




