UPDATED GENERAL INFORMATION - JANUARY 24, 2020

Additional Quiz 1 practice problems

These supplement the problems in quiz1w19.solutions.pdf.

1. Let X be the set of all sequences $a=\left\{a_{n}\right\}$ taking values in $[0,1]$, and define

$$
d(a, b)=\sum_{n=1}^{\infty} \frac{\left|b_{n}-a_{n}\right|}{2^{n}}
$$

Show that the infinite series on the right hand side always converges and the formula defines a metric on X.

SOLUTION

Since $0 \leq a_{n}, b_{n} \leq 1$ we have $\left|a_{n}-b_{n}\right| \leq 2$ and therefore we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}-a_{n}\right|}{2^{n}} \leq \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}
$$

The right hand side coverges, so by the comparison test the left hand side does too.
We now need to show that the function defines a metric on X. Since the infinite sum consists of nonnegative terms, we know that $d(a, b) \geq 0$. Furthermore, if equality holds then all the summands must be zero, which is equivalent to saying that $a_{n}=b_{n}$ for all n. The symmetry property of the metric follows because $\left|a_{n}-b_{n}\right|=\left|b_{n}-a_{n}\right|$ for all n. Finally, the Triangle inequality holds because $\left|a_{n}-b_{n}\right|=\left|\left(a_{n}-c_{n}\right)-\left(b_{n}-c_{n}\right)\right| \leq\left|a_{n}-c_{n}\right|+\left|c_{n}-b_{n}\right|$ for all $n . ■$
2. Let X be the set of all polynomials over the real numbers, and define

$$
d(p, q)=\int_{0}^{1}|p(t)-q(t)| d t
$$

Prove that this formula defines a metric on X. [Hint: If the right hand side is zero, why do we have $p(t)=q(t)$ for all $t \in[0,1]$, and why does this imply that $p(t)=q(t)$ everywhere? Recall that polynomial functions are continuous.]

SOLUTION

Since the integrand of the expression on the right is nonnegative, it follows that the integral is also nonnegative. It is clearly zero if $p=q$. Suppose now that it is zero for some p and q. Now $|p-q|$ is a polynomial (hence continuous) function, and either $p=q$ or else there are only finitely many real numbers r such that $p(r)-q(r)=0$. In the latter case, there is some $c \in[0,1]$ for which the difference is nonzero, and by continuity there is some interval $[u, v] \subset[0,1]$ containing c such that $|p-q|>h$ on $[u, v]$ for some $h>0$. Therefore we have

$$
0<h(v-u)<\int_{u}^{v}|p(t)-q(t)| d t \leq \int_{0}^{1}|p(t)-q(t)| d t
$$

so that the right hand side is positive if $p \neq q$.
The remaining conditions are much easier to verify. In particular, $d(p, q)=d(q, p)$ because $|p-q|=|q-p|$, and the triangle inequality follows because $0 \leq|p-s| \leq|p-q|+|q-s|$ for all polynomials p, q, s; this inequality implies a corresponding inequality for integrals over $[0,1]$.
3. Suppose that (X, d) is a metric space such that $d(u, v)<\pi / 4$ for all u and v. Prove that $\sin d(u, v)$ defines a metric on X. [Hint: Use trigonometric identities to show that $\sin (\alpha+\beta) \leq$ $\sin \alpha+\sin \beta$ for $0 \leq \alpha, \beta \leq \pi / 4$.]

SOLUTION

Let's begin with the hint. We know that

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha
$$

and since $0 \leq \alpha, \beta \leq \pi / 4$ we know that each of the sines and cosines lies in $[0,1]$. Therefore the right hand side is less than or equal to $\sin \alpha+\sin \beta$.

We shall now verify that $\sin d(u, v)$ defines a metric on X. Since $d(u, v)<\pi / 4$ it follows that $\sin d(u, v) \geq 0$, and if equality holds then $d(u, v)=0$; since d is a metric this means that $u=v$. Furthermore, $d(u, v)=d(v, u)$ by the symmetry property of distances, and therefore we also have $\sin d(u, v)=\sin d(v, u)$. Finally, we need to verify the Triangle Inequality. Since d is a metric, the hypotheses imply that $d(u, v) \leq d(u, w)+d(w, v) \leq \pi / 2$ for all $u, v, w \in X$, and since the sine function is increasing on $[0, \pi / 2]$ we have $\sin d(u, v) \leq \sin (d(u, w)+d(w, v))$. By the observation in the first paragraph the right hand side is less than or equal to $\sin d(u, w)+\sin d(w, v)$, and if we combine this with the preceding sentence we obtain the Triangle Inequality for the function $\sin d(u, v)$.

These are more complicated than quiz questions, but they illustrate the general pattern for determining whether a function $f\left(x_{1}, x_{2}\right)$ defines a metric; namely, one has to show that each of the properties in the definition is satisfied in order to verify that one has a metric space. If any of these properties is false for some specific choices of points in X, then the function does not define a metric.

Modification to lecture notes

An extra page has been added in the middle of math145notes05a.pdf (page 5.9A). This clarifies and corrects statements on the preceding page.

Recommended exercises for Chapter 6 of Sutherland

- Chapter 6: $6.3,6.5,6.6,6.12,6.13,6.15,6.20,6.23$

The following references are to the file file exercises02w14.pdf in the course directory.

- Additional exercises for Chapter 6: 1, 2, 4, 7

Reading assignments from solutions to exercises
Another recommendation is to read through the solution to Exercise 6.9 from Sutherland (see the file solutions $02 \mathrm{w} 14 . \mathrm{pdf}$ in the course directory). This exercise proves assertions in the notes about certain sets which arise in the study of double integrals (in multivariable calculus).

