Math 145A
Winter 2020

UPDATED GENERAL INFORMATION — JANUARY 31, 2020

Solutions to study problems

The solutions to problems from previous years are in handwritten form. No solution to Prob-
lems 2 from 2017 is given because the details are already worked out in the file

continuity-example.pdf

and although no solution to Problem 7 is given in the handwritten pages there is a solution at the
end of the file.

Solutions to the 2020 problems

1. We shall first solve this using the epsilon characterization in which accompanies the state-
ment of the problem. First of all ¢M is an upper bound because a < M (all a € A) and ¢ > 0
imply ca < M. Next, if ¢ > 0 then ¢/c is positive, and therefore there is some x € A such that
x > M — (¢/c). Multiplying both sides of this by ¢ > 0, we see that cz > ¢M — . Therefore cM
satisfies the second property for a least upper bound as stated in the epsilon characterization.m

We can also verify this without using the epsilon characterization as follows. As before, we
know that ¢M is an upper bound. Suppose now that N is an upper bound for cA. Then N/c is an
upper bound for A and hence M < N/c¢, and if we multiply both sides by the positive constant ¢
we find that cM < N .=

2. Every ¢ € C has the form form a + b where a € A and b € B, and since A and B have least
upper bounds M and N respectively, it follows that ¢ = a +b < M + N. Therefore M + N is an
upper bound. To see that it is a least upper bound, let € > 0. Then we also have %6 > 0, so by
the epsilon characterization we can find x € A and y € B so that x > M — %5 and y > N — %5. It
follows that = + y € C' and

Tty > (M—%) + <N—%> = M+N-¢

and hence M + N satisfies the epsilon condition for a least upper bound.m

3. Let e > 0 and p € X. We need to find some § > 0 such that dy (f(p), f(p')) < € when
A(p,p’) < 0. By definition the left hand side in the second inequality is A(p,p’) = dx(p,p’) +
dy (f(p), f(p')). Since both summands are nonnegative, it follows that dy (f(p), f(p')) < A(p,p’).
If the right hand side of this inequality is less than ¢, it follows that the left hand side is also less
than e, and therefore we can take § = c.m

4. To prove that D is not open it is enough to prove that for some (z,z) € D thereisno § > 0
so that Nj ((z,2)) C D. In fact this is true for every such point, for (z,z + ) € Ns ((z,z))
but (z,z+ 1 6) ¢ D.



We shall now verify that the complement R?> — D is open. A point in the latter has the
form (z,y) where x # y. If § = |z — y| and (u,v) € N5((z,y)) it will suffice to show that
(u,v) € RZ—D. — It might be helpful to draw a picture in order to motivate this assertion; the
main points to plot are (z,x), (z,y) and (y,y).

Assume to the contrary that there is a point (w,w) € N5 ((z,y) ). Since the distance between
(z,y) and (u,v) is at least as large as both |z —u| and |y —v|, if u = v = w we see that both |z — w|
and |y — w| are strictly less than 0. Therefore the Triangle Inequality implies that |z — y| is strictly
less than 20 = |x — y|, which is a contradiction. The source of this contradiction is the assumption
that there is a point (w,w) € N5 ((z,y) ), and hence no such point can exist. In other words, the
neighborhood is contained in the complement of D.m

Comments on the handwritten pages

The so-called new problems are the ones from 2019, and the old problems are those from 2017.

Correction. In old problem 5, replace “{a}” with “{b}”.
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Solution to old problem 7

Recall that the symmetric difference for two subsets C, D of a larger set S may be written in
the form

C+D = <Cm(s—D)) U (Dm(s—C)).

Now suppose that f: Y — X is a set-theoretic function and A, B C X. Since the inverse image
construction preserves unions and intersections we have

FUA+B] = f—l[Am(X—B)] Uf‘l[(Bm(X_A)} _

(FHAINFTIX = B]) U (fBINFTHX - A])

and since the inverse image construction also preserves relative complements the right hand side is
equal to

(FA N =7B)) U (F71BI N (v = £7hA]) )

By definitiion the latter is equal to f~1[A] + f~![B]=



