UPDATED GENERAL INFORMATION - JANUARY 31, 2020

Solutions to study problems

The solutions to problems from previous years are in handwritten form. No solution to Problems 2 from 2017 is given because the details are already worked out in the file

```
continuity-example.pdf
```

and although no solution to Problem 7 is given in the handwritten pages there is a solution at the end of the file.

Solutions to the 2020 problems

1. We shall first solve this using the epsilon characterization in which accompanies the statement of the problem. First of all $c M$ is an upper bound because $a \leq M$ (all $a \in A$) and $c>0$ imply $c a \leq M$. Next, if $\varepsilon>0$ then ε / c is positive, and therefore there is some $x \in A$ such that $x>M-(\varepsilon / c)$. Multiplying both sides of this by $c>0$, we see that $c x>c M-\varepsilon$. Therefore $c M$ satisfies the second property for a least upper bound as stated in the epsilon characterization.a

We can also verify this without using the epsilon characterization as follows. As before, we know that $c M$ is an upper bound. Suppose now that N is an upper bound for $c A$. Then N / c is an upper bound for A and hence $M \leq N / c$, and if we multiply both sides by the positive constant c we find that $c M \leq N$.
2. Every $c \in C$ has the form form $a+b$ where $a \in A$ and $b \in B$, and since A and B have least upper bounds M and N respectively, it follows that $c=a+b \leq M+N$. Therefore $M+N$ is an upper bound. To see that it is a least upper bound, let $\varepsilon>0$. Then we also have $\frac{1}{2} \varepsilon>0$, so by the epsilon characterization we can find $x \in A$ and $y \in B$ so that $x>M-\frac{1}{2} \varepsilon$ and $y>N-\frac{1}{2} \varepsilon$. It follows that $x+y \in C$ and

$$
x+y>\left(M-\frac{\varepsilon}{2}\right)+\left(N-\frac{\varepsilon}{2}\right)=M+N-\varepsilon
$$

and hence $M+N$ satisfies the epsilon condition for a least upper bound.
3. Let $\varepsilon>0$ and $p \in X$. We need to find some $\delta>0$ such that $d_{Y}\left(f(p), f\left(p^{\prime}\right)\right)<\varepsilon$ when $\Delta\left(p, p^{\prime}\right)<\delta$. By definition the left hand side in the second inequality is $\Delta\left(p, p^{\prime}\right)=d_{X}\left(p, p^{\prime}\right)+$ $d_{Y}\left(f(p), f\left(p^{\prime}\right)\right)$. Since both summands are nonnegative, it follows that $d_{Y}\left(f(p), f\left(p^{\prime}\right)\right) \leq \Delta\left(p, p^{\prime}\right)$. If the right hand side of this inequality is less than ε, it follows that the left hand side is also less than ε, and therefore we can take $\delta=\varepsilon$
4. To prove that D is not open it is enough to prove that for some $(x, x) \in D$ there is no $\delta>0$ so that $N_{\delta}((x, x)) \subset D$. In fact this is true for every such point, for $\left(x, x+\frac{1}{2} \delta\right) \in N_{\delta}((x, x))$ but $\left(x, x+\frac{1}{2} \delta\right) \notin D$.

We shall now verify that the complement $\mathbb{R}^{2}-D$ is open. A point in the latter has the form (x, y) where $x \neq y$. If $\delta=\frac{1}{2}|x-y|$ and $(u, v) \in N_{\delta}((x, y))$ it will suffice to show that $(u, v) \in \mathbb{R}^{2}-D$. - It might be helpful to draw a picture in order to motivate this assertion; the main points to plot are $(x, x),(x, y)$ and (y, y).

Assume to the contrary that there is a point $(w, w) \in N_{\delta}((x, y))$. Since the distance between (x, y) and (u, v) is at least as large as both $|x-u|$ and $|y-v|$, if $u=v=w$ we see that both $|x-w|$ and $|y-w|$ are strictly less than δ. Therefore the Triangle Inequality implies that $|x-y|$ is strictly less than $2 \delta=|x-y|$, which is a contradiction. The source of this contradiction is the assumption that there is a point $(w, w) \in N_{\delta}((x, y))$, and hence no such point can exist. In other words, the neighborhood is contained in the complement of D.

Comments on the handwritten pages

The so-called new problems are the ones from 2019, and the old problems are those from 2017. Correction. In old problem 5, replace " $\{a\}$ " with " $\{b\}$ ".

Comments on practice problems in arab Up late 04.145 A.w19. pdf

New problems

1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. If $x_{i} \in X$ let

$$
\begin{aligned}
& a_{i}=\min _{j \neq i} d\left(x_{j}, x_{i}\right) \text {, so } a_{i}>0 \text {. Take } \\
& r=\frac{1}{2} a_{i} . \text { Then } N_{r}\left(x_{i}\right)=\left\{x_{i}\right\} .
\end{aligned}
$$

2. A open, closed in X.

A open in $x \Rightarrow X-A$ closed.
A closed in $X \Rightarrow X-A$ open.
3. Let $X=\mathbb{R}$, and take $A_{n}=\left\{\frac{1}{n}\right\}$, which is clocecl, so $\cup A_{m}=\cup \overline{A_{n}}$. However, $O \in \overline{\cup A_{n}}$
Now $\overline{U A_{n}}$ is closed and contaniss A_{k} to all
k, so $\overline{V A}_{n} \geq \bar{A}_{k}$ M k and hance $\overline{U A_{n}} \geq \cup A_{n}$. Omexamble tor the lat sentence is $A_{n}=\{n\}, n \in \mathbb{N}$.
4. (a) Let $x \in U$, let e be a unit vector, and choose $r>0$ so $N_{r}(x) \subseteq U$. Then x is the hint of the sequence $x+\frac{r}{n} e$, and wo we of these $=x$.
(b) By \#1 each $\{x\}$ is open in $X \Rightarrow$ $\{x\}=N_{r}(x)$ some $r>0$. Hence

$$
X \cap\left(N_{r}(x)-\{x\}\right)=X \cap \phi=\phi \text { and by def }
$$ x is not a lint point.

(c) Take $Q^{n} \subseteq \mathbb{R}^{n}$.
5. Imitate the case of a two fold product. By construction $d_{i}\left(q_{i}(n), q_{i}(v)\right) \leq D(n, v)$ so $q_{i}: X_{1} \times X_{2} \times X_{3} \rightarrow X_{i}$ is continuous $($ quinn ε, take $\delta=\varepsilon)$. Hence f cont, \Rightarrow each $q_{i} f$ cont. Cow warcely, if each $q_{i} f=f_{i}$ arshocy cont and $\varepsilon>0$ chose $\delta_{i}>0$ so

$$
d q_{1}\left(y_{0}, y\right)<\delta_{i}^{-n} \Rightarrow d\left(f_{i}\left(y_{0}\right), f_{i}(y)\right)<\frac{\varepsilon}{\sqrt{3}}
$$

Let $\delta=\min \delta_{i}$. Thew $d\left(y, y_{0}\right)<\delta \Rightarrow$

$$
D\left(f(y), f\left(y_{0}\right)\right)<\varepsilon
$$

6. Use \#5 and note that

$$
q_{1} F=q_{2}, q_{2} F=q_{3}, \quad q_{3} F=q_{1},
$$

Old problems

1. The containment follows because $b \in B \Rightarrow f(b) \in f[B]$, so that $b \in f^{-1}[f[B)]$. Fur the example with proper containment, take $f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=x^{2}, B=[0,1]$. Then the night hand side is $[-1,1]$.
2. PASS
3. By definition we have $f(b)<f\left(c_{+}\right)+\varepsilon$ for some $b>c$ and $f(a)>f\left(c_{-}\right)-\varepsilon$ for some $a<c$. Hance

$$
f\left(c_{-}\right)-\varepsilon<f(x)<f\left(c_{\perp}\right)+\varepsilon
$$

if $a<x<b$.

If $f(e-)=f(c+)$, then f is cont. at e; take δ so $(c-\delta, c+\delta) \subseteq(a, b)$.
If $f\left(c_{-}\right)<f\left(c_{+}\right)$there are sequences

$$
L_{n} \rightarrow c\left(L_{n} \leq c\right) \quad U_{n} \rightarrow c\left(U_{n} \geqslant c\right)
$$

with $\lim _{n} f\left(L_{n}\right)=f(c-), f\left(U_{n}\right)=f\left(C_{t}\right)$
and $f\left(c_{-}\right) \neq f\left(c_{t}\right) \Rightarrow f$ mot cont in woursate.

(ii) $O[A]$,

$$
\left[B^{\frac{1}{2}}\right]_{3 / 2}
$$

$(\operatorname{in} \dot{1}){ }^{0}(A]^{1}$

$$
1 /\left[\begin{array}{ll}
1 & B \\
1 / 2
\end{array}\right)^{3 / 2}
$$

(iv)

$$
\begin{aligned}
& 0 \quad 2 / 3 \\
& {[A)^{0}} \\
& 1 / 3(B] 1
\end{aligned}
$$

5. Suppose $b \in A$. Then if $\varepsilon>0$ cur find $a \in A$ so $b-a \leqslant \varepsilon$. Hence

$$
\left(N_{\varepsilon}(b)-\{a\}\right) \cap A \neq \phi \text { because }
$$

$b \notin A$.
6. (i) Aoken $\Rightarrow A=X \cap A$ \& X is closed A closed $\Rightarrow A=X \cap A$ o X is open
(in) $[a, b)=[a, b+1] \cap(a-1, b)$

$$
(a, b]=(a, b+1) \cap[a-1, b] .
$$

(irvin) Follow the hint $Q=E \wedge V \Rightarrow$ $Q \leq E$, Eclosed. But them $E=\mathbb{R}$, so $Q=\mathbb{R} \cap V=V$, V open. Since V is not open this is impossible.
7. PASS
(i)
8. $\sqrt{u+v} \leq \sqrt{u}+\sqrt{v}$ becanse

$$
\begin{aligned}
& (\sqrt{u+v})^{2}=u+v \\
& (\sqrt{u}+\sqrt{v})^{2}=u+2 \sqrt{u v}+v
\end{aligned}
$$

and the first express, on \leq secourd.
(ii) The only mowtrivial panit to chack is the Triougle I mequality. Do this verification wing ((i).
(ivi) PASS
9. $d^{*}=$ maxi $d, d^{\prime} \geqslant 0$ brearse $d, d^{\prime} \geqslant 0$

If $d^{*}=0$ then mase $d, d^{\prime}=0 \Rightarrow$ $d(u, v)=0$ on $d^{\prime}(u, v)=0$. I weothercase $u=v$.
$d^{*}(u, v)=d^{*}(v, u)$ becance $d^{*}=m$ arod, d^{\prime} and both of the latter hure this proparty.

Finally

$$
d(x, z)=\text { max } d(x, z), d^{\prime}(x, z) .
$$

Sony the max is $d(x, z)$.
Tim $d^{*}(x, z)=d(x, z) \leq d(x, y)+d(x, z)$ $\leqslant d^{*}(x, y)+d^{*}(y, z)$ since $d \leq d^{*}$.
10. (i) Let $M=\max \left|f^{\prime}\right|$ on $\left[Q_{1} 1\right]$. $0<u<v<1$. Them dy the MVT $|f(u)-f(v)|=\left|f^{\prime}(w) \cdot(u-v)\right|$ whine us $W<v$. The RHS $\leq M \cdot|m v|$.
(ii) If $d\left(x_{1}, x_{2}\right)<\frac{\varepsilon}{k}$ the

$$
\begin{gathered}
d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leqslant K \cdot d\left(x_{1}, x_{2}\right) \\
K \cdot \frac{\varepsilon}{K}=\varepsilon
\end{gathered}
$$

Solution to old problem 7

Recall that the symmetric difference for two subsets C, D of a larger set S may be written in the form

$$
C+D=(C \cap(S-D)) \cup(D \cap(S-C))
$$

Now suppose that $f: Y \rightarrow X$ is a set-theoretic function and $A, B \subset X$. Since the inverse image construction preserves unions and intersections we have

$$
\begin{gathered}
f^{-1}[A+B]=f^{-1}[A \cap(X-B)] \cup f^{-1}[(B \cap(X-A)]= \\
\left(f^{-1}[A] \cap f^{-1}[X-B]\right) \cup\left(f^{-1}[B] \cap f^{-1}[X-A]\right)
\end{gathered}
$$

and since the inverse image construction also preserves relative complements the right hand side is equal to

$$
\left(f^{-1}[A] \cap\left(Y-f^{-1}[B]\right)\right) \cup\left(f^{-1}[B] \cap\left(Y-f^{-1}[A]\right)\right)
$$

By definition the latter is equal to $f^{-1}[A]+f^{-1}[B]$. .

