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Winter 2020

UPDATED GENERAL INFORMATION — FEBRUARY 10, 2020

Recommended exercises for Chapter 6 of Sutherland

Chapter 6: 6.3, 6.5, 6.6, 6.12, 6.13, 6.15, 6.20, 6.23

The following references are to the file file exercises02w14.pdf in the course directory.

Additional exercises for Chapter 6: 1, 2, 4, 7

Reading assignments from solutions to exercises

Another recommendation is to read through the solution to Exercise 6.9 from Sutherland (see
the file solutions02w14.pdf in the course directory). This exercise proves assertions in the notes
about certain sets which arise in the study of double integrals (in multivariable calculus).

Intersections of empty families of sets

On page 7.4 of math145Anotes07.pdf there is a marginal note about considering an intersec-
tion of a family of subsets F = {Aα} only when F is nonempty. This was also mentioned earlier
in the course, and an undergraduate level discussion appears on pages 18–19 of Halmos, Naive Set

Theory . The key point is that if the intersection of an empty family would be defined, then it
would not be empty as one might expect, but instead it turns out to be everything (see also page
44 of the directory file set-theory-notes.pdf).

Assignments for Chapters 7− 10

Working the exercises listed below is strongly recommended.

The following exercises are taken from Sutherland:

Chapter 7: 7.1 – 7.2, 7.6

Chapter 8: 8.3, 8.4, 8.6

Chapter 9: 9.11, 9.14

Chapter 10: 10.1, 10.6, 10.10 – 10.11, 10.17 – 10.18 (in the latter, the map f × g should
go from X ×X ′ to Y × Y ′ and not from X × Y to X ′ × Y ′)

The following references are to the file exercises03w14.pdf in the course directory.

Additional exercise for Chapter 7: 2
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Additional exercises for Chapter 8: 2 – 4

The following references are to the file exercises04w14.pdf in the course directory.

Additional exercise for Chapter 9: 2

Additional exercises for Chapter 10: 1 – 3

Reading assignments from solutions to exercises

Two additional strong recommendations are

(1) to read through the solutions to Additional Exercise 1 for Chapter 7 and Additional
Exercise 5 for Chapter 8 in exercises03w14.pdf, both of which are worked out in the
file solutions03w14.pdf.

(2) to read through the solutions to Exercises 9.5, 9.8, 10.12 and 10.16 from Sutherland,
Additional Exercise 3 for Chapter 9 and Additional Exercise 4 for Chapter 10 in exer-

cises04w14.pdf, all of which are worked out in the file solutions04w14.pdf.

Further reading recommendations

The files intro2topA-08a.pdf and intro2topA-08b.pdf explain the connection between the
formal concept of homeomorphism and the often seen description of topology as a “rubber sheet
geometry.” Both contain color pictures which are meant to emphasize the geometric side of point
set topology. In contrast, the files intro2topA-07a.pdf and intro2topA-07b.pdf concern the set-
theoretic side of the subject. Thoroughout the subject, both sides play complementary roles: Most
of the motivation and intuition is geometric, and the logical integrity of the subject is established
using the techniques of set theory.

The second quiz

The second quiz onTuesday, February 19, will cover the material corresponding to Chapters
6–8 of Sutherland. In addition to the starred problems in the file

aabNewUpdate03.145B.w20.pdf

Some practice problems (in addition to the previously recommended exercises) are given below:

New problems

1. Let X be a set, and let T(X) denote the set of all topologies on X. Explain why the unions
and intersections ⋃

U∈T(X)

U and
⋂

U∈T(X)

U

define topologies on X. [Hint: They are standard examples!]

2. (a) Let (X,T) be a topological space such that for some fixed positive integer n > 1, the set
X contains at least n+ 1 points and T contains every subset of X with exactly n points lies in T.
Prove that T is the discrete topology. [Hint: Prove by induction on k that T contains every subset
with n− k elements, where 0 ≤ k ≤ n− 1.]
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(b) In the preceding, suppose we modify the assumptions so that X still contains at least n+1
points, but now every subset of X with exactly n points is a closed subset of X. Prove that T

contains the cofinite topology.

3. Let (X,U) andn (Y,V) be topological spaces and let f : X → Y be a function which is not
assumed to be continuous. If S is a subbase for V and the inverse image of every subset in S is
open in (X,U) show that f is in fact continuous.

4. Let (X, d) be a metric space and suppose u, v ∈ X are such that d(u, v) = 1. Is there always
a sequence of points {un} in X such that un 6= v for all n and limn→∞ un = v? Either prove this
or give a counterexample.

5. Let p, q ∈ R
2 and let r, s > 0 be real numbers. Show that the open neighborhoods Nr(p) and

Ns(q) are homeomorphic by a map of the form f(x) = mx + b where b ∈ R
2 and m > 0. [Hints:

Solve for b such that f(p) = q, and find m so that |y − p| = 1
2
r implies |f(y)− q| = 1

2
s.]

2019 problems

1. Let A ⊂ X, and assume that X has the indiscrete topology. If U is the induced subspace
topology on A, explain why U is equal to the indiscrete topology on A.

2. Show that the open intervals (−∞, b) and (a,+∞), where a, b ∈ R, are a subbase for the
standard metric topology on R.

3. Let X be an infinite set with the cofinite topology, and let U be a nonempty open subset.
Prove that the closure U is equal to X.

In each of the following problems, determine if the statement is always or sometimes

true and sometimes false. In the second case, give examples where the statement is

true and examples where it is false, using topological spaces with at least two points.

4. Let (X,U) be a topological space, and let U ′ denote the sets of the form X−W where W ∈ U .
Then U ′ defines a topology on X.

5. If U1 and U2 are topologies on a set X, then so is U1 ∪ U2.

6. If X and Y are topological spaces with the cofinite topologies, then the product topology
X × Y is the same as the cofinite topology on this set.

2017 problems

1. Define the concept of limit point for a subset of a topological or metric space.

2. Define what it means for a function f from one topological space (X1,T1) to another space
(X2,T2) to be a homeomorphism.

3. Define the indiscrete topology on a set X.

4. Define the cofinite topology on a set X.

5. Define the concept of a base for a topological space (X,T ).
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6. Let A be a family of subsets for some set X, and let T denote the topology on X generated
by A. Describe the elements of T in terms of unions and intersections of sets in A.

7. Give an example of an open subset U in a topological space X such that U is properly contained
in IntU . [Hint: There are simple examples where X is the real numbers with the usual topology.]

Note. For every open subset U ⊂ X we have U ⊂ IntU , and for many standard examples
the two subsets are equal.

8. Give an example of a closed subset F in a topological space X such that F properly contains
IntF . [Hint: There are simple examples where X is the real numbers with the usual topology.]

Note. For every closed subset F ⊂ X we have F ⊃ IntF , and for many standard
examples the two subsets are equal.

9. Give examples of subsets A,B ⊂ R such that the intersection of the closures A ∩ B properly
contains A ∩B.

Note. For every pair of subsets A,B ⊂ X we know that A ∩ B contains A ∩B, and in
some cases equality holds.

10. Give examples of subsets A,B ⊂ R such that the union of the interiors IntA ∪ IntB is
properly contained in IntA ∪B.

Note. For every pair of subsets A,B ⊂ X we know that IntA ∪ IntB is contained in
IntA ∪B, and in some cases equality holds.

11. Give an example of an infinite sequence of closed subsets Fn ⊂ R such that the infinite union
∪n Fn is not closed.

12. Give an example of a pair of subsets A,B ⊂ R such that A is closed, B is open but not closed,
and A ∪B is closed.
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