
Math 145A
Winter 2020

UPDATED GENERAL INFORMATION — MARCH 5, 2020

Solutions to study problems for the third quiz

For the sake of convenience, statements of the problems are also included. A companion file
aabUpdate11a.145A.w20.pdf contains illustrations for some problems. It is extremely likely that
the third quiz will be one of these problems or a part of a problem.

1. (a) Let f : X → Y be a homeomorphism, and assume that X has the Hausdorff Separation
Property. Prove that Y also has this property.

(b) Let f : X → Y be a homeomorphism, and assume that the topology on X comes from a
metric dX . Find a metric dY such that the topology on Y comes from dY .

SOLUTION

(a) Let p, q be distinct points in Y , and let u, v ∈ X be the unique points such that f(u) = p and
f(v) = q. Then there are disjoint open subsets U, V in X containing u and v respectively. Since f
is a homeomorphism, it takes open subsets to open subsets and disjoint subsets to disjoint subsets.
Therefore f [U ] and f [V ] are disjoint open subsets containing p = f(u) and q = f(v) respectively.

(b) Let dY (y1, y2) = dX(x1, x2) where xi = f−1(yi) for i = 1, 2. This is a metric because dX is a
metric. We claim that the induced metric topology on Y is equal to the original topology on Y .

First of all, each neighborhood NY
ε (y) is open in the original topology because (i) its image

under f−1 is just NX
ε (x), where x = f−1(y), (ii) the image of this open subset of X is an open

subset in Y with respect to the original topology because f is a homeomorphism. Conversely,
suppose that W is open with respect to the original topology on Y . Since f is a homeomorphism
we know that V = f−1[W ] is an open subset of the metric space X and hence for suitable choices
of ε(x) > 0 we then have

V =
⋃

x∈V

NX
ε(x)(x) .

Now let y = f(x), so that x = f−1)(y). Then it follows that W = f [V ] and

W =
⋃

y∈W

NY
ε(x)(y)

so that W is open with respect to the topology associated to the metric dY .

2. (a) A topological space X is said to be irreducible if it cannot be written as the union of two
proper closed subsets. Prove this equivalent to the condition that the intersection of two nonempty
open sets is always nonempty.

(b) If X is an infinite space with the cofinite topology, explain why X is irreducible.
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(c) If f : X → Y is a homeomorphism and X is irreducible, prove that Y is also irreducible.

(d) If X is a nonempty irreducible Hausdorff space, prove that X consists of a single point.

SOLUTION

(a) Suppose that X is irreducible and U, V are nonempty proper open subsets of X. Let E =
X − U and F = X − V . Then by the definition of an irreducible space we know that E ∪ F must
be a proper subset of X and hence

X − (E ∪ F ) = (X − E) ∩ (X − F ) = U ∩ V

must be nonempty. Conversely, if X satisfies the condition stated in the problem, suppose that E
and F are proper closed subsets of X; we need to show that E ∪ F is also a proper subset of X.
This is equivalent to saying that the complement is nonempty. Much as before, let U = X −E and
V = X −F . Then the displayed sequence of equations combines with the stated condition to show
that X − (E ∪ F ) is nonempty and hence E ∪ F must be a proper subset of X.

(b) In the cofinite topology, the proper closed subsets are just the finite subsets of X. Since the
union of two finite subsets is finite and the space is infinite, the union of two closed proper subsets
can never be all of X.

(c) Suppose that Y = F1∪F2 where F1 and F2 are closed subsets. If Ei = f−1[Fi] then it follows
that X = E1 ∪ E2 where E1 and E2 are closed subsets. Since X is irreducible, one of them, say
E1, must be equal to X. But f is 1–1 and onto, and this means that F1 = f [E1] = f [X] = Y .
Therefore at least one of the two sets F1, F2 must be all of Y , and thus Y satisfies the condition
for irreducibility.

(d) We shall prove the contrapositive: If X is Hausdorff and contains at least 2 points, then X
is not irreducible.

Assume the conditions in the contrapositive, and let p, q be distinct points in X. Then there
are disjoint open subset U, V such that p ∈ U and q ∈ V . Let E = X − U and F = X − V .
Then by construction p 6∈ F and q 6∈ E, so that these closed subsets are proper. Combining these
observations, we see that

E ∪ F = (X − U) ∪ (X − V ) = X − (U ∩ V ) = X

(recall U ∩ V is empty) and therefore X is not irreducible.

3. (a) Let n ≥ 2 be an integer, and suppose that X is a topological space with more than n
points such that every subset with exactly n elements is closed. Prove that X is a T1 space. [Hint:
Prove by downward induction on k ≤ n that X contains every subset with exactly k elements.]

(b) Give a counterexample to the preceding conclusion when X has exactly n points.

SOLUTION

(a) Actually, a direct induction argument is probably cleaner. We must begin with the case
n = 2, so that X contains at least 3 points. Suppose that x ∈ X. Since X has at least 3 points we
can find a 3 point subset {x, y, z} ⊂ X. By the given assumption we know that both {x, y} and
{x, z} are closed subsets. Therefore their intersection, which is merely {x}, must also be a closed
subset, and it follows that X is a T1 space.

Assume now that the statement
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If X has at least k + 1 points and every subset with exactly k

points is closed, then X is T1

is known for some k = n ≥ 2; to complete an induction argument, we need to show that the result
is also true for k = n + 1. In this case the hypothesis means that each subset of X with exactly
n+1 elements is closed in X, and to complete the inductive step it will suffice that X contains all
subsets with exactly n elements; this is true because X has at least n + 2 > n + 1 elements, and
hence the induction hypothesis (the statement is true for k = n) will imply that X is a T1 space.

So assume A ⊂ X contains exactly n elements. Since X is assumed to contain at least n + 2
points there are two points p, q ∈ X −A. We then have that

A = (A ∪ {p}) ∩ (A ∪ {q})

and therefore A is an intersection of two closed subsets (each factor has n+ 1 points) and hence is
also a closed subset. Therefore X satisfies the inductive condition for k = n, and by the induction
hypothesis it follows that X must be a T1 space.

(b) If X is a set with exactly n ≥ 2 elements and is given the indiscrete topology, then there is
only one subset with n elements — namely, X itself — and this subset is closed. However, this
space is not a T1 space because one point subsets are not closed subsets of X.

4. Suppose that X and Y are topological spaces, and assume A ⊂ X and B ⊂ Y are nonempty
subsets such that A×B is a closed subset of X × Y (with respect to the product topology). Show
that A and B are closed in X and Y respectively. Also prove the analogous result when A×B is an
open subset (i.e., A and B are open in X and Y respectively). [Hint: The coordinate projections
to X and Y are continuous and open, but they do NOT take closed subsets of the product to
closed subsets of the factors. Consider vertical and horizontal slices {x}×Y and X ×{y}, and also
their intersections with A×B.]

SOLUTION

Let a ∈ A and b ∈ B, and consider the horizontal and vertical slice subspaces X ×{b} and {a}×Y
in X ×Y . In the lectures we showed that the maps Hb : X → X ×{b} and Va : Y → {a}×Y given
by

Hb(x) = (x, b) , Va(x) = (a, y)

are homeomorphisms. Under these homeomorphisms we have the following correspondences:

A ←→ A× {b} = (X × {b}) ∩ A×B , B ←→ = ({a} × Y ) ∩ A×B

(see Figure 1 in aabNewUpdate11a.145A.w20.pdf for a drawing).
Since A× B is a closed subset of X × Y it follows that A× {b} is a closed subset of X × {b} and
{a} × Y is a closed subset of X × Y . Since A corresponds to A × {b} under the homeomorphism
from X to X ×{b} and B corresponds to {a} ×B under the homeomorphism from Y to {a} × Y ,
it follows that A and B are closed in X and Y respectively.

If we replace “closed” by “open” everywhere, the analogous reasoning remains valid, and
therefore one obtains a similar conclusion with this substitution.

5. Give an example to illustrate the assertion in the previous hint: The coordinate projections
to X and Y do NOT necessarily take closed subsets of the product to closed subsets of the factors.
[Hint: Consider the hyperbola in the coordinate plane defined by xy = 1.]
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SOLUTION

The point of this exercise is that there is an alternate proof for the previous one in the case of open
sets. Suppose that A×B is open in X × Y , and let πX , πY denote the coordinate projections onto
X and Y respectively. We know that both of these mappings send open subsets to open subsets,
and therefore A = πX [A × B] and B = πY [A × B] are open subsets of X and Y respectively.
The same argument would work if these coordinate projection maps sent closed subsets to closed

subsets, but it is important to recognize that coordinate projections do not necessarily have this

property.

Follow the hint and let F ⊂ R × R be the hyperbola defined by xy = 1. Since the function
m(x, y) = xy is continuous and one point subsets of a metric space are closed, it follows that F
is closed. Now let p1, p2 denote the coordinate projections onto the first and second coordinates
respectively. Then we have

R− {0} = p1[F ] = p2[F ]

and this example has the desired properties since the left hand side is not an open subset of the
real line.

6. Suppose that X is a metric space and A ⊂ X.

(a) Show that d(x,A) = inf{d(x, a)| a ∈ A is a continuous function of x. [Hint: Use
d(x, y) ≥ |d(x, a) − d(y, a)|.]

(b) Suppose that A is closed. Show that d(x,A) = 0 if and only if x ∈ A.

(c) Show that if A is closed then A = ∩n Un, a countable intersection of open sets. [Hint:
Look at the sets where the distance is less than 1/n where n runs through the positive integers.]

(d) Give an example of a countable intersection of open sets (in some metric space) which is
not a closed subset.

(e) Show that if X is an uncountable set with the cofinite topology, then the conclusion in (c)
is not necessarily true.

SOLUTION

(a) By the Triangle Inequality we have d(x, y) + d(x, a) ≥ d(y, a) for all x, y ∈ X and a ∈ A.
Therefore if we take greatest lower bounds we have

d(x, y) + d(x,A) ≥ d(y,A) or eqivalently

d(x, y) ≥ d(y,A) − d(x,A)

for all x, y. If we switch the roles of x and y we obtain a similar inequality d(x, y) ≥ d(x,A)−d(y,A),
and these combine to yield d(x, y) ≥ |d(x,A)− d(y,A)|. Therefore if d(x, y) < ε then we also have
|d(x,A) − d(y,A)| < ε, and hence d(x,A) is a continuous function of X.

Notice that d(x,A) is the greatest lower bound for a set of nonnegative real numbers and
therefore must also be nonnegative.

(b) Suppose x ∈ A; there are two cases depending upon whether x ∈ A or x ∈ L(A). In the first
case 0 ≤ d(x,A) ≤ d(x, x) = 0 (recall x ∈ A, which means that d(x,A) = 0. In the second case,
we know that for every ε > 0 there is some a ∈ Nε(x) ∩ A; therefore ε > d(x, a) ≥ d(x,A) for all
ε > 0. This means that 0 ≥ d(x,A) ≥ 0, so that d(x,A) = 0.
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Conversely, suppose that d(x,A) = 0. Then for each ε > 0 there must be a point a ∈ A so that
d(a, x) < ε. The case a = x is consistent with the conclusion we want, so assume a 6∈ X. Then we
have

a ∈ (Nε(x)− {a}) ∩ A 6= ∅

for every ε > 0. Since this is the definition of a limit point, it follows that x ∈ A.

(c) Let fA(x) = d(x,A) and let Un = f−1
A [ [−∞, 1/n) ]. Then each Un is open in X, and since A

is a closed subset we have A = f−1[{0}] = ∩n Un by part (b).

(d) Let’s see if we can find something which is relatively simple. One possibility is a half open
interval such as (0, 1]. See Figure 2 for a drawing which corresponds to the construction given
below.

Consider the open intervals in the real line given by

Un =

(

0, 1 +
1

n

)

where n runs through all the positive integers. Then ∩n Un = (0, 1].

7. If X is a topological space, prove that the following properties are equivalent:

(i) Every closed set is a countable intersection of open subsets.

(ii) Every open set is a countable union of closed subsets.

SOLUTION

(i) =⇒ (ii) Let U be an open subset, and let F = X − U . Then F = ∩n Vn where the sets Vn

are open in X, and therefore

U = X − F =
⋃

n

X − Vn

where each of the sets X − Vn is closed.

(ii) =⇒ (i) Let F be a closed subset, and let U = X − F . Then U = ∩n En where the
sets En are closed in X, and therefore

F = X − U =
⋂

n

X −En

where each of the sets X − En is open.

8. Let f : X → Y be a homeomorphism of topological spaces, and if B ⊂ Z let LZ(B) denote
the set of limit points of B (in Z). Prove that

LY (f [A]) = f [LX(A)] .

SOLUTION

Suppose that y ∈ LY (f [A]). then for every open set V such that y ∈ V we have (V −{y})∩f [A] 6= ∅.
Let x ∈ X be the unique point such that f(x) = y; we want to show that x is a limit point of A.
Let U be an open subset of X with x ∈ U , and let W = f [U ]. Then W is an open set containing
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y = f(x) and hence (W − {f(x)}) ∩ f [A] 6= ∅. Let u = f(z) be a point in this intersection (we
can write the point as f(z) for some z because f is onto). Then it follows that z ∈ (U − {x}) ∩A
because f is 1–1. Since U was an arbitrary open subset containing x, it follows that x ∈ LX(A)
and hence y = f(x) ∈ f [LX(A)].

Conversely, suppose that y = f(x) ∈ f [LX(A)]; we want to show that y is a limit point of
f [A]. Let V be an open set containing y, and again choose U so that f [U ] = V . By construction
U is an open set containing x, and by construction x is a limit point of A. Therefore there is
some point z 6= x such that z ∈ U ∩ A. Since z 6= x it follows that f(z) 6= f(x) = y and
f(z) ∈ f [U ] ∩ f [A] = V ∩ f [A]. Since V was arbitrary, it follows that y ∈ LY (f [A]).

Strong recommendation. Draw some pictures of X and Y while studying this proof.

9. Let f : X → Y be a homeomorphism of topological spaces, and let A ⊂ X. Prove that f
induces a homeomorphism h from X −A to Y − f [A] by the identity h(x) = f(x) for x ∈ X −A.

SOLUTION

Since f is 1–1 onto, the same is true of h, and it suffices to show that a set V ⊂ X − A is open if
and only if f [V ] ⊂ Y − f [A] is open in the subspace topology.

Suppose that V ⊂ X − A is open in the subspace topology, so that V = (X −A) ∩W where
W is open in X. Since f is 1–1 onto we have f [V ] = f [X − A] ∩ f [W ] = (Y − f [A]) ∩ f [W ].
Now f sends open subsets in X to open subsets in Y (it is a homeomorphism), so it follows that
h[V ] = f [V ] is an open subset of Y − f [A] in the subspace topology for the latter.

The other direction is similar. Suppose that U ⊂ Y − f [A] is open in the subspace topology,
so that U = (Y − f [A]) ∩ Ω where Ω is open in Y . If g = f−1, theng[U ] = g(Y − f [A]) ∩ g[Ω]
as before, and since g and f are inverses of each other the right side of the equation reduce to
g[U ] = (X −A) ∩ g[Ω], which is open with respect to the subspace topology on X −A.

Old problems from 2019

1. Let B ⊂ A ⊂ X where X is a topological space. Prove that if B is closed in X, then B is
closed with respect to the subspace topology on A, and likewise if “open” replaces “closed.” [Hint:
How are A, B and A ∩B related?]

SOLUTION

If B is closed in X, then B = B ∩ A because B ⊂ A and hence B is closed with respect to the
subspace topology on A. The same argument is valid if “open” replaces “closed.”

2. Suppose that A ⊂ X and B ⊂ Y where X and Y are nonempty topological spaces, and
assume that A × B is a nonempty open subset of X × Y . Prove that A is open in X and B is
open in Y , and likewise if “closed” replaces “open.” [Hint: Take intersections with {x0} × Y and
X×{y0} where (x0, y0) ∈ A×B, and recall from the lectures that the vertical and horizontal slices
are homeomorphic to the factors X and Y .]

This is a duplication of a problem from the first part.

3. Let X be a T1 space, let A ⊂ X, and let p be a limit point of A (no assumptions on whether
or not p ∈ A). Show that every open subset V satisfying p ∈ V must contain infinitely many points
of A. [Hint: See the comments before the first problem.]
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SOLUTION

Proceed by induction on n ≥ 1 to show that (V − {p}) ∩ A contains at least n points. The case
n = 1 is just the definition of limit point.

We need to show that if the statement is true for n, then it is also true for n + 1. Using the
inductive assumption, let E be a subset of (V −{p})∩A consisting of n points. Since X is T1 this
finite set is closed, so that U = V − E = (X − E) ∩ V is also an open subset, and by construction
it contains p. Therefore the intersection (U − {p}) ∩A is nonempty and contains some point q, so
that E ∪ {q} is a subset of (V − {p}) ∩ A consisting of n + 1 points. This completes the proof of
the inductive step.

The preceding shows that (V − {p}) ∩ A contains at least n points for every positive integer
n, and the latter implies that this intersection must be infinite.

4. Prove that a Hausdorff space is a T1 space. [Hint: This was done in the lectures.]

SOLUTION

Suppose that x ∈ X and let y 6= x. Then there are disjoint open subsets Uy and Vy such that
x ∈ Uy and y ∈ Vy. It now follows that

X − {x} =
⋃

y 6=x

{y} ⊂
⋃

y 6=x

Vy ⊂ X − {x}

so that the last two subsets in this display must be equal. But this means X = {x} is open, which
is the same as saying that {x} is closed.

5. Let B ⊂ A ⊂ X where X is a topological space, and assume that (a) the subset A is closed in
X, (b) the subset B is closed with respect to the subspace topology on A. Prove that B is closed
in X, and likewise if “open” replaces “closed.” [Hint: Use Proposition C in a previous update file
or the definition of the subspace topology.]

SOLUTION

By Proposition C we know that B = A ∩ C where C is a closed subset of X. Therefore B is
an intersection of two closed subsets and hence is closed. The same argument is valid if “open”
replaces “closed.”

6. Suppose that A ⊂ X and B ⊂ Y are closed. Show that X×B, A×Y and A×B are closed in
the product topology, and likewise if “open” replaces “closed.” [Hint: The coordinate projections
to X and Y are continuous and open, but they do NOT take closed subsets of the product to
closed subsets of the factors.]

SOLUTION

Let πX , πY denote the coordinate projections onto X and Y respectively. Then X ×B = π−1
X [B] is

closed because πX is continuous and B ⊂ Y is closed. Similarly A× Y = π−1
Y [A] is closed because

πX is continuous and A ⊂ X is closed. Therefore the intersection

A×B = (A× Y ) ∪ (X ×B)

is also closed.

The same argument is valid if “open” replaces“closed.” However, in this case one can simply
use the definition of the product topology to verify this statement.
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