UPDATED GENERAL INFORMATION - MARCH 12, 2020

Additional hints for practice problems

The first part of this document contains fairly broad hints for the 2020 problems. A file with solutions and hints for problems from previous years is also attached.

1. Let $F=\{y\}$ where $y \neq x$, and consider the inverse images of $\left[0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right]$ with respect to f. Why are these subsets open and disjoint?
2. Strictly speaking we should restrict attention to subbases \mathcal{A} such that the entire space X is a union of finite intersections of sets in \mathcal{A} and \mathcal{A} contains the empty set.

By definition (and the preceding stipulation), if \mathcal{A} is a subbase for the topology, then every open subset is a union of finite intersections of sets in \mathcal{A}. Specializing to the data of the problem, we know that if U is an open subset then U is a union of finite intersections of sets in \mathcal{V}, and likewise for \mathcal{W}. Since $U \cap U=U$, if we take the intersections of these two descriptions, why does this form a third description involving intersections of sets in \mathcal{V} and \mathcal{W} ?
3. The only complicated part of verifying that d^{*} defines a metric is checking the Triangle Inequality; all the others follow directly from the definition of d^{*} in terms of the original metric d. Proving that $d^{*}(x, z) \leq d^{*}(x, y)+d^{*}(x, z)$ can be split into 8 cases depending upon whether $d(u, v) \leq 1$ or $d(u, v)>1$ for each of the pairs $(u, v)=(x, z),(x, y),(y, z)$. To complete the problem, consider the hint already given and explain why $N_{\varepsilon}^{d}(x)=N_{\varepsilon}^{d^{\prime}}(x)$ for $\varepsilon<1$.
4. Prove by induction on k that the set $U_{0} \cap U_{1} \cap \cdots U_{k}$ is connected when $k \leq n$.
5. If a is a limit point of A and b is a limit point of B, why is (a, b) a limit point of $A \times B$? For the final part, what happens if Y is a single point?
6. What happens if the endpoints are irrational numbers? Consider the set of all such intervals such that the midpoint is a rational number. Why doe these form a base for the topology?
7. Why is each $U_{\alpha}-\{x\}$ open in both U_{α} and X ? There are two cases depending on whether or noot $x \in U_{\alpha}$. Why is $X-\{x\}$ the union of the sets $U_{\alpha}-\{x\}$?

Remark. The analogous statement with "Hausdorff" replacing $\mathbf{T}_{\mathbf{1}}$ turns out to be false.
8. Recall that if $x_{0} \in X$ then $f(x)=d\left(x, x_{0}\right)$ is a nonconstant continuous real valued function of X. Since X is infinite, the image is connected and contains more than one point. What does this imply about the cardinal number of X ?

There is no Problem 9.
10. (a) Once again, if $g(y)=d(x, y)$, then $g: X \rightarrow \mathbb{R}$ is continuous. By definition the set $C N_{\varepsilon}(x)$ is the inverse image of the closed interval $[0,1]$ under g, so by continuity this subset is closed in X.
(b) Let $X_{1}=[-\varepsilon, \varepsilon], X_{2}=\{-\varepsilon, 0, \varepsilon\}$ and $X_{3}=[-\varepsilon, 0] \cup\{\varepsilon\}$. Then in X_{1} we have

$$
(-\varepsilon, \varepsilon)=N_{\varepsilon}(0) \neq \overline{N_{\varepsilon}(0)}=C N_{\varepsilon}(0)=[-\varepsilon, \varepsilon]
$$

in X_{2} we have

$$
\{0\}=N_{\varepsilon}(0)=\overline{N_{\varepsilon}(0)} \neq C N_{\varepsilon}(0)=\{-\varepsilon, 0, \varepsilon\}
$$

and in X_{3} we have

$$
(-\varepsilon, 0]=N_{\varepsilon}(0), \quad[-\varepsilon, 0]=\overline{N_{\varepsilon}(0)}, \quad C N_{\varepsilon}(0)=[-\varepsilon, 0] \cup\{\varepsilon\}
$$

so that $N_{\varepsilon}(0)$ is properly contained in $\overline{N_{\varepsilon}(0)}$ and the latter is propely contained in $X_{3}=C N_{\varepsilon}(0)$.
11. Let d and d^{\prime} be the discrete and the standard metric on the real line. Why is the identity mapping id ${ }_{X}:\left(X, d^{\prime}\right) \rightarrow(X, d)$ not continuous? To form the desired infinite family $\left\{A_{\alpha}\right\}$, consider all singleton sets $\{x\}$ where x runs through all the elements of X.

