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Solutions to Quiz 1 practice problems

1. Let X be the set of all sequences a = {an} taking values in [0, 1], and define

d(a, b) =

∞∑
n=1

|bn − an|

2n
.

Show that the infinite series on the right hand side always converges and the formula defines a
metric on X.

SOLUTION

Since 0 ≤ an, bn ≤ 1 we have |an − bn| ≤ 2 and therefore we have

∞∑
n=1

|bn − an|

2n
≤

∞∑
n=1

1

2n−1
.

The right hand side coverges, so by the comparison test the left hand side does too.

We now need to show that the function defines a metric on X. Since the infinite sum consists of
nonnegative terms, we know that d(a, b) ≥ 0. Furthermore, if equality holds then all the summands
must be zero, which is equivalent to saying that an = bn for all n. The symmetry property of the
metric follows because |an− bn| = |bn−an| for all n. Finally, the Triangle inequality holds because
|an − bn| = |(an − cn)− (bn − cn)| ≤ |an − cn|+ |cn − bn| for all n.

2. Let X be the set of all polynomials over the real numbers, and define

d(p, q) =

∫
1

0

|p(t)− q(t)| dt .

Prove that this formula defines a metric on X. [Hint: If the right hand side is zero, why do we
have p(t) = q(t) for all t ∈ [0, 1], and why does this imply that p(t) = q(t) everywhere? Recall that
polynomial functions are continuous.]

SOLUTION

Since the integrand of the expression on the right is nonnegative, it follows that the integral is also
nonnegative. It is clearly zero if p = q. Suppose now that it is zero for some p and q. Now |p− q|
is a polynomial (hence continuous) function, and either p = q or else there are only finitely many
real numbers r such that p(r)− q(r) = 0. In the latter case, there is some c ∈ [0, 1] for which the
difference is nonzero, and by continuity there is some interval [u, v] ⊂ [0, 1] containing c such that
|p− q| > h on [u, v] for some h > 0. Therefore we have

0 < h(v − u) <

∫
v

u

|p(t)− q(t)| dt ≤

∫
1

0

|p(t)− q(t)| dt
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so that the right hand side is positive if p 6= q.

The remaining conditions are much easier to verify. In particular, d(p, q) = d(q, p) because
|p − q| = |q − p|, and the triangle inequality follows because 0 ≤ |p − s| ≤ |p − q| + |q − s| for all
polynomials p, q, s; this inequality implies a corresponding inequality for integrals over [0, 1].

3. Suppose that (X, d) is a metric space such that d(u, v) < π/4 for all u and v. Prove that
sin d(u, v) defines a metric on X. [Hint: Use trigonometric identities to show that sin(α + β) ≤
sinα+ sin β for 0 ≤ α, β ≤ π/4.]

SOLUTION

Let’s begin with the hint. We know that

sin(α+ β) = sinα cos β + sin β cosα

and since 0 ≤ α, β ≤ π/4 we know that each of the sines and cosines lies in [0, 1]. Therefore the
right hand side is less than or equal to sinα+ sinβ.

We shall now verify that sin d(u, v) defines a metric on X. Since d(u, v) < π/4 it follows that
sin d(u, v) ≥ 0, and if equality holds then d(u, v) = 0; since d is a metric this means that u = v.
Furthermore, d(u, v) = d(v, u) by the symmetry property of distances, and therefore we also have
sin d(u, v) = sin d(v, u). Finally, we need to verify the Triangle Inequality. Since d is a metric, the
hypotheses imply that d(u, v) ≤ d(u,w) + d(w, v) ≤ π/2 for all u, v, w ∈ X, and since the sine
function is increasing on [0, π/2] we have sin d(u, v) ≤ sin (d(u,w) + d(w, v)). By the observation
in the first paragraph the right hand side is less than or equal to sin d(u,w) + sin d(w, v), and
if we combine this with the preceding sentence we obtain the Triangle Inequality for the function
sin d(u, v).

These are more complicated than quiz questions, but they illustrate the general pattern for
determining whether a function f(x1, x2) defines a metric; namely, one has to show that each of
the properties in the definition is satisfied in order to verify that one has a metric space. If any of
these properties is false for some specific choices of points in X, then the function does not define
a metric.
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