Compactness of closed intervals

Here is a detailed verification that a closed interval [a, b] in the real line is compact; *i.e.*, every open covering $\mathcal{U} = \{U_{\alpha}\}$ has a finite subcovering.

Suppose that the interval [a, b] and open covering \mathcal{U} are given as in the preceding sentence. Let $x \in [a, b]$. Then there is some indexing value $\alpha(x)$ such that $x \in U_{\alpha(x)}$, and by the definition of the subspace topology there is some open interval J_x such that $J_x \cap [a, b] \subset U_{\alpha(x)}$.

By the Heine-Borel-Lebesgue Theorem, there is a finite subcollection of intervals J_{x_1}, \dots, J_{x_n} such that

$$[a,b] \subset J_{x_1} \cup \cdots \cup J_{x_n}$$

which means that

$$[a,b] = (J_{x_1} \cap [a,b]) \cup \cdots \cup (J_{x_n} \cap [a,b])$$

Since $J_{x_i} \cap [a, b] \subset U_{\alpha(x_i)}$ for all *i* and $U_{\alpha} \subset [a, b]$ for all α , this implies that

$$[a,b] = U_{\alpha(x_1)} \cup \cdots \cup U_{\alpha(x_n)}$$

and therefore a finite subcollection of \mathcal{U} covers [a, b]. By the definition of compactness, it follows that [a, b] is compact.