Mathematics 145A, Winter 2016, Examination 1

Answer Key

1. [25 points] If (X, d) is a metric space, then $A \subset X$ is said to be locally closed in X if $A=E \cap V$, where E is closed in X and V is open in X.
(i) Suppose that $f:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is a continuous mapping and $A \subset X_{2}$ is locally closed. Prove that $f^{-1}[A]$ is a locally closed subset of X_{1}.
(ii) Suppose that A and B are locally closed in X, where as usual (X, d) is a metric space. Prove that $A \cap B$ is also locally closed in X.

SOLUTION

(i) Write $A=E \cap V$ where E is closed in X_{2} and V is open in X_{2}. Then we have

$$
f^{-1}[A]=f^{-1}[E \cap V]=f^{-1}[E] \cap f^{-1}[V] .
$$

By continuity $f^{-1}[E]$ is closed in X_{1} and $f^{-1}[V]$ is open in X_{1}, and therefore the inverse image of A is locally closed in X_{1}.
(ii) Write $A=E \cap V$ where E is closed in X_{2} and V is open in X_{2}, and also write $B=F \cap W$ where F is closed in X_{2} and W is open in X_{2}. Then we have

$$
A \cap B=(E \cap V) \cap(F \cap W)=(E \cap F) \cap(V \cap W)
$$

Since $E \cap F$ is closed in X and $V \cap W$ is open in X, it follows that $A \cap B$ is locally closed in X.
2. [25 points] Suppose that (X, d) is a metric space and that $x, y, z \in X$ satisfy $d(x, z) \leq \frac{1}{2} d(x, y)$. Prove that $d(y, z) \geq \frac{1}{2} d(x, y)$.

SOLUTION

By the Triangle Inequality we have $d(x, y) \leq d(x, z)+d(y, z)$, which implies $d(y, z) \geq$ $d(x, y)-d(x, z)$. Since $d(x, z) \leq \frac{1}{2} d(x, y)$, it follows that the right hand side is greater than or equal to $x(x, y)-\frac{1}{2} d(x, y)=\frac{1}{2} d(x, y)$.■
3. [25 points] Let (Y, Δ) be a metric space with the usual discrete metric, let (X, d) be an arbitrary metric space, and let $f: Y \rightarrow X$ be a map of sets. Prove that f defines a continuous mapping from (Y, Δ) to (X, d).

SOLUTION

We need to show that if V is an open subset in (X, d), then its inverse image $f^{-1}[V]$ in (Y, Δ) is also open. However, every subset in Y is open with respect to the discrete metric, and therefore $f^{-1}[V]$ is automatically open, which means that f is automatically continuous.■
4. [25 points] Let (X, d) be a metric space, and let $d^{\prime}\left(x_{1}, x_{2}\right)=100 d\left(x_{1}, x_{2}\right)$. Prove that d^{\prime} is also a metric on X.

SOLUTION

We have $d^{\prime}(x, y)=100 d(x, y)$ and this is nonnegative because d is nonnegative. If $0=d^{\prime}(x, y)=100 d(x, y)$, then it follows that $d(x, y)-0$ and hence $x=y$. Also $d^{\prime}(y, x)=$ $100 d(y, x)$, and since d is a metric the right hand side is equal to $100 d(x, y)=d^{\prime}(x, y)$; therefore d^{\prime} is symmetric in x and y. Finally, we may check the Triangle Inequality as follows:

$$
\begin{gathered}
d^{\prime}(x, y)=100 d(x, y) \leq 100(d(x, z)+d(y, z))= \\
100 d(x, z)+100 d(y, z)=d^{\prime}(x, z)+d^{\prime}(y, z) .
\end{gathered}
$$

Therefore d satisfies all the properties required of a metric.

