Mathematics 145A, Winter 2016, Examination 1

~

Answer Key

1. [25 points] If (X, d) is a metric space, then $A \subset X$ is said to be **locally closed** in X if $A = E \cap V$, where E is closed in X and V is open in X.

(i) Suppose that $f: (X_1, d_1) \to (X_2, d_2)$ is a continuous mapping and $A \subset X_2$ is locally closed. Prove that $f^{-1}[A]$ is a locally closed subset of X_1 .

(*ii*) Suppose that A and B are locally closed in X, where as usual (X, d) is a metric space. Prove that $A \cap B$ is also locally closed in X.

SOLUTION

(i) Write $A = E \cap V$ where E is closed in X_2 and V is open in X_2 . Then we have

$$f^{-1}[A] = f^{-1}[E \cap V] = f^{-1}[E] \cap f^{-1}[V] .$$

By continuity $f^{-1}[E]$ is closed in X_1 and $f^{-1}[V]$ is open in X_1 , and therefore the inverse image of A is locally closed in X_1 .

(*ii*) Write $A = E \cap V$ where E is closed in X_2 and V is open in X_2 , and also write $B = F \cap W$ where F is closed in X_2 and W is open in X_2 . Then we have

$$A \cap B = (E \cap V) \cap (F \cap W) = (E \cap F) \cap (V \cap W).$$

Since $E \cap F$ is closed in X and $V \cap W$ is open in X, it follows that $A \cap B$ is locally closed in X.

2. [25 points] Suppose that (X, d) is a metric space and that $x, y, z \in X$ satisfy $d(x, z) \leq \frac{1}{2}d(x, y)$. Prove that $d(y, z) \geq \frac{1}{2}d(x, y)$.

SOLUTION

By the Triangle Inequality we have $d(x, y) \leq d(x, z) + d(y, z)$, which implies $d(y, z) \geq d(x, y) - d(x, z)$. Since $d(x, z) \leq \frac{1}{2}d(x, y)$, it follows that the right hand side is greater than or equal to $x(x, y) - \frac{1}{2}d(x, y) = \frac{1}{2}d(x, y)$.

3. [25 points] Let (Y, Δ) be a metric space with the usual discrete metric, let (X, d) be an arbitrary metric space, and let $f: Y \to X$ be a map of sets. Prove that f defines a continuous mapping from (Y, Δ) to (X, d).

SOLUTION

We need to show that if V is an open subset in (X, d), then its inverse image $f^{-1}[V]$ in (Y, Δ) is also open. However, **every** subset in Y is open with respect to the discrete metric, and therefore $f^{-1}[V]$ is automatically open, which means that f is automatically continuous.

4. [25 points] Let (X, d) be a metric space, and let $d'(x_1, x_2) = 100 d(x_1, x_2)$. Prove that d' is also a metric on X.

SOLUTION

We have d'(x, y) = 100d(x, y) and this is nonnegative because d is nonnegative. If 0 = d'(x, y) = 100d(x, y), then it follows that d(x, y) - 0 and hence x = y. Also d'(y, x) = 100d(y, x), and since d is a metric the right hand side is equal to 100d(x, y) = d'(x, y); therefore d' is symmetric in x and y. Finally, we may check the Triangle Inequality as follows:

$$d'(x,y) = 100d(x,y) \leq 100(d(x,z) + d(y,z)) = 100d(x,z) + 100d(y,z) = d'(x,z) + d'(y,z).$$

Therefore d satisfies all the properties required of a metric.