Mathematics 145A, Winter 2017, Examination 1

Answer Key

1. [20 points] Suppose that (X, d) is a metric space, let $a \in X$, let $\delta>0$, and let $N_{\delta}(a)$ be the open disk of radius δ centered at a; in other words, $N_{\delta}(a)$ is the set of all $x \in X$ such that $d(a, x)<\delta$. Prove that $N_{\delta}(a)$ is an open subset of X.

SOLUTION

Suppose that $x \in N_{\delta}(a)$ and let $r=\delta-d(a, x)$; the right hand side is positive because $x \in N_{\delta}(a)$ implies $d(a, x)<\delta$. Consider the open disk $N_{r}(x)$; we claim that $N_{r}(x) \subset N_{\delta}(a)$. This follows because $y \in N_{r}(x)$ implies $d(x, y)<r$, so that

$$
\begin{gathered}
d(y, a) \leq d(y, x)+d(x, a)<r+d(x, a)= \\
(\delta-d(a, x))+d(a, x)=\delta
\end{gathered}
$$

so that $N_{r}(x) \subset N_{\delta}(a) . ■$
2. [30 points] (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and let A be the halfopen interval $(-2,2]$. Prove that $f^{-1}[A]$ is the intersection of an open subset of \mathbb{R} with a closed subset of \mathbb{R}. [Hint: Explain why A also has this property.]
(b) In the preceding, specialize to the function $f(x)=\sin x$. In this case determine whether $f^{-1}[A]$ open, closed, both or neither, and give reasons for your answer. [Hint: What is $f[\mathbb{R}]$?]

SOLUTION

(a) The half-open interval is the intersection of the open set $V=(-2, \infty)$ and the closed set $E=(-\infty, 2]$. Therefore we have

$$
f^{-1}[A]=f^{-1}[V \cap E] f^{-1}[V] \cap f^{-1}[E]
$$

and by the continuity of f we know that $f^{-1}[V]$ is open and $f^{-1}[E]$ is closed (in \mathbb{R}).■
(b) The image of the sine function is the closed interval $\Delta=[-1,1]$, which is contained in A. Therefore $f^{-1}[A] \supset f^{-1}[\Delta]=\mathbb{R}$, and since the left hand side is a subset of \mathbb{R} by definition, we have $f^{-1}[A]=\mathbb{R}$. Since \mathbb{R} is both an open and a closed subset of itself, it follows that $f^{-1}[A]$ is both open and closed..
3. [25 points] Let X be a set, and let d and d^{\prime} be metrics on X. Prove that the sum $d+d^{\prime}$ is also a metric. [Hint: If $u, v \geq 0$ and $u+v=0$, what can we say about u and v ?]

SOLUTION

If $u \geq 0$ and $v \geq 0$, then $u+v=0$ forces u and v to be both zero; if either were positive then the sum would be positive. Knowing this we may verify the conditions for a metric as follows:

Since $d \geq 0$ and $d^{\prime} \geq 0$ we must have $d+d^{\prime}=0$. Furthermore, if $d(x, y)+d^{\prime}(x, y)=$ 0 , then the preceding paragraph implies that $d(x, y)=0=d^{\prime}(x, y)$, so that $x=y$. By the symmetry property of metrics we have $d(y, x)+d^{\prime}(y, x)=d(x, y)+d^{\prime}(x, y)$. By the Triangle Inequality for d and d^{\prime} we have $d(x, y)+d^{\prime}(x, y) \leq[d(x, z)+$ $d(z, y)]+\left[d^{\prime}(x, z)+d^{\prime}(z, y)\right]=\left[d(x, z)+d^{\prime}(x, z)\right]+\left[d(z, y)+d^{\prime}(z, y)\right]$.
4. [25 points] (a) Given a continuous function $f: X \rightarrow Y$ (where X and Y are metric spaces) the graph of $\Gamma_{f}: X \rightarrow X \times Y$ is defined by $\Gamma_{f}(x)=(x, f(x))$. Prove that Γ_{f} is continuous.
(b) If X and Y are metric spaces, a function $f: X \rightarrow Y$ is said to be nonexpanding if for all $x_{1}, x_{2} \in X$ we have $d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq d_{X}\left(x_{1}, x_{2}\right)$. Prove that such a function is continuous.

SOLUTION

(a) It suffices to show that the coordinate functions $\pi_{X}{ }^{\circ} \Gamma_{f}$ and $\pi_{Y}{ }^{\circ} \Gamma_{f}$ are continuous, where π_{X} and π_{Y} are the coordinate projections onto X and Y respectively. These follow immediately because $\pi_{X}{ }^{\circ} \Gamma_{f}=\operatorname{id}_{X}$ and $\pi_{Y}{ }^{\circ} \Gamma_{f}=f$.
(b) In fact the function is uniformly continuous, for if $\varepsilon>0$ and $\delta=\varepsilon$, then $d(u, v)<\delta$ implies $d(f(u), f(v)) \leq d(u, v)<\delta=\varepsilon$; in other words, we can take $\delta(\varepsilon)$ to be ε itself..

