Mathematics 145A, Winter 2017, Examination 1

~

Answer Key

1. [20 points] Suppose that (X, d) is a metric space, let $a \in X$, let $\delta > 0$, and let $N_{\delta}(a)$ be the open disk of radius δ centered at a; in other words, $N_{\delta}(a)$ is the set of all $x \in X$ such that $d(a, x) < \delta$. Prove that $N_{\delta}(a)$ is an open subset of X.

SOLUTION

Suppose that $x \in N_{\delta}(a)$ and let $r = \delta - d(a, x)$; the right hand side is positive because $x \in N_{\delta}(a)$ implies $d(a, x) < \delta$. Consider the open disk $N_r(x)$; we claim that $N_r(x) \subset N_{\delta}(a)$. This follows because $y \in N_r(x)$ implies d(x, y) < r, so that

$$\begin{aligned} d(y,a) &\leq d(y,x) + d(x,a) &< r + d(x,a) = \\ & (\delta - d(a,x)) + d(a,x) = \delta \end{aligned}$$

so that $N_r(x) \subset N_{\delta}(a)$.

2. [30 points] (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, and let A be the halfopen interval (-2, 2]. Prove that $f^{-1}[A]$ is the intersection of an open subset of \mathbb{R} with a closed subset of \mathbb{R} . [*Hint:* Explain why A also has this property.]

(b) In the preceding, specialize to the function $f(x) = \sin x$. In this case determine whether $f^{-1}[A]$ open, closed, both or neither, and give reasons for your answer. [*Hint:* What is $f[\mathbb{R}]$?]

SOLUTION

(a) The half-open interval is the intersection of the open set $V = (-2, \infty)$ and the closed set $E = (-\infty, 2]$. Therefore we have

$$f^{-1}[A] = f^{-1}[V \cap E] f^{-1}[V] \cap f^{-1}[E]$$

and by the continuity of f we know that $f^{-1}[V]$ is open and $f^{-1}[E]$ is closed (in \mathbb{R}).

(b) The image of the sine function is the closed interval $\Delta = [-1, 1]$, which is contained in A. Therefore $f^{-1}[A] \supset f^{-1}[\Delta] = \mathbb{R}$, and since the left hand side is a subset of \mathbb{R} by definition, we have $f^{-1}[A] = \mathbb{R}$. Since \mathbb{R} is both an open and a closed subset of itself, it follows that $f^{-1}[A]$ is both open and closed. 3. [25 points] Let X be a set, and let d and d' be metrics on X. Prove that the sum d + d' is also a metric. [*Hint:* If $u, v \ge 0$ and u + v = 0, what can we say about u and v?]

SOLUTION

If $u \ge 0$ and $v \ge 0$, then u + v = 0 forces u and v to be both zero; if either were positive then the sum would be positive. Knowing this we may verify the conditions for a metric as follows:

Since $d \ge 0$ and $d' \ge 0$ we must have d+d' = 0. Furthermore, if d(x, y)+d'(x, y) = 0, then the preceding paragraph implies that d(x, y) = 0 = d'(x, y), so that x = y. By the symmetry property of metrics we have d(y, x)+d'(y, x) = d(x, y)+d'(x, y). By the Triangle Inequality for d and d' we have $d(x, y) + d'(x, y) \le [d(x, z) + d(z, y)] + [d'(x, z) + d'(z, y)] = [d(x, z) + d'(x, z)] + [d(z, y) + d'(z, y)].$ 4. [25 points] (a) Given a continuous function $f : X \to Y$ (where X and Y are metric spaces) the graph of $\Gamma_f : X \to X \times Y$ is defined by $\Gamma_f(x) = (x, f(x))$. Prove that Γ_f is continuous.

(b) If X and Y are metric spaces, a function $f: X \to Y$ is said to be nonexpanding if for all $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2)) \leq d_X(x_1, x_2)$. Prove that such a function is continuous.

SOLUTION

(a) It suffices to show that the coordinate functions $\pi_X \circ \Gamma_f$ and $\pi_Y \circ \Gamma_f$ are continuous, where π_X and π_Y are the coordinate projections onto X and Y respectively. These follow immediately because $\pi_X \circ \Gamma_f = \operatorname{id}_X$ and $\pi_Y \circ \Gamma_f = f$.

(b) In fact the function is uniformly continuous, for if $\varepsilon > 0$ and $\delta = \varepsilon$, then $d(u, v) < \delta$ implies $d(f(u), f(v)) \le d(u, v) < \delta = \varepsilon$; in other words, we can take $\delta(\varepsilon)$ to be ε itself.