Mathematics 145A, Winter 2019, Examination 1

Answer Key

1. $[25$ points $]$ Let (X, d) be a metric space, and let $p \in X$. Show that $X-\{p\}$ is an open subset of X.

SOLUTION

Suppose that $q \neq p$ and $q \in X$, which is equivalent to the statement $q \in X-\{p\}$. Let $a=d(p, q)$ and set $r=\frac{1}{2} a$. We claim that $N_{r}(q) \subset X-\{p\}$; in other words, if $q \neq p$ and $x \in N_{r}(q)$ then $x \neq p$. This follows immediately since $d(x, q)<\frac{1}{2} a$ and $d(p, q)=a . ■$
2. [20 points] Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces. A function $F: X \rightarrow Y$ is said to satisfy a Lipschitz condition if there is a constant $K>0$ such that $d^{\prime}(F(u), F(v)) \leq$ $K \cdot d(u, v)$ for all $u, v \in X$. Show that F is continuous if it satisfies such a condition.

SOLUTION

Let $\varepsilon>0$, let $x \in X$ and take $\delta=\varepsilon / K$. Then $d(v, x)<\delta$ implies

$$
d^{\prime}(F(x), F(v)) \leq K \delta=K \cdot \frac{\varepsilon}{K}=\varepsilon
$$

and hence F is continuous at x. Since x was arbitrary, F is continuous everywhere in X.■
3. [25 points] Let (X, d) be a metric space, and let A be a subset of X which is neither closed nor open. Prove that the relative complement $X-A$ is also neither closed nor open.

SOLUTION

Since a set is open if and only if its complement is closed, we and A is not closed, it follows that $X-A$ is not open. Similarly, since A is not open, it follows that $X-A$ is not closed.
4. [30 points] (a) Give an example of a closed subset $A \subset \mathbb{R}$ and a point $a \in A$ such that a is not a limit point of A.
(b) Let Y_{+}and Y_{-}be the sets of positive and negative real numbers respectively. Show that the boundary of each set is equal to $\{0\}$.

SOLUTION

(a) Take A to be any one point subset $\{a\}$. Then $a \notin L(A)$ because for all $\varepsilon>0$ we know that $\left(N_{\varepsilon}(a)-\{a\}\right) \cap A$ is a subset of $A-\{a\}$, which is empty.
(b) Let's take the description of the boundary of a set E as $\bar{E}-\operatorname{Int}(E)$. Both Y_{+}and Y_{-}are open subsets of \mathbb{R} so the boundaries are just $\overline{Y_{+}}-Y_{+}$and $\overline{Y_{-}}-Y_{-}$. Neither Y_{+} nor Y_{-}is closed in \mathbb{R}, but these subsets are contained in the closed subsets $[0,+\infty)$ and $(-\infty, 0]$ respectively, and therefore the latter are the closures of the respective subsets. Consequently, for both these subsets E the complement of E in \bar{E} is just $\{0\}$.

