Mathematics 145A, Winter 2020, Examination 1

Answer Key

1. [25 points] Suppose that $A \subset \mathbb{R}$ is a nonempty bounded subset whose least upper bound is M, and let $2 A$ be the set of all numbers of the form $2 a$ where a runs through all the elements of A. Prove that $2 M$ is the least upper bound of $2 A$.

SOLUTION

Since $a \in A$ implies $a \leq M$ we know that $2 a \leq 2 M$ for all a and hence $2 M$ is an upper bound for A. Suppose now that N is the least upper bound for $2 A$; by the preceding, we have $N \leq 2 M$. Then $2 a \leq N$ for all a and hence $a \leq \frac{1}{2} N$ for all $a \in A$. Therefore $\frac{1}{2} N$ is an upper bound for A and hence $M \leq \frac{1}{2} N$. If we combine the two inequalities for M and N we see that $N=2 M$.
2. [25 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which need not be continuous, let d be the standard metric on \mathbb{R}, and define a new metric d^{*} on \mathbb{R} by $d^{*}(u, v)=|u-v|+|f(u)-f(v)|$. Verify that the "identity" mapping $j:\left(\mathbb{R}, d^{*}\right) \rightarrow(\mathbb{R}, d)$, defined by $j(x)=x$, is a continuous mapping of metric spaces. [Hint: Given $\varepsilon>0$, one can find a corresponding $\delta>0$ which is the same for all choices of x.]

SOLUTION

Following the hint, we want a $\delta>0$ such that for all x we have $|u-v|<\varepsilon$ whenever $|u-v|+|f(u)-f(v)|<\delta$. Since the summands on the right hand side are nonnegative we have

$$
|u-v| \leq|u-v|+|f(u)-f(v)|=d^{*}(u, v)
$$

so $|u-v|<\varepsilon$ if the right hand side is less than ε. But this means we can take $\delta=\varepsilon$.
3. [25 points] Given the two subsets $\{0\}$ and $\mathbb{R}-\{0\}$ of the real numbers, one is open and one is not. Determine which is open and which is not open, and for each subset give reasons for your answer.

SOLUTION

If $\{0\}$ were open in the real line then some interval of the form $(-h, h)$ would be contained in $\{0\}$. Sine $h / 2>0$ belongs to this interval, there is no interval of the given form with the desired property, and therefore $\{0\}$ cannnot be an open subset of the real line.

To show the complement is open, for each $x \neq 0$ we need to construct an open interval of the form $(x-h, x+h)$ which is entirely contained in $\mathbb{R}-\{0\}$. In fact there are unique intervals where h is as large as possible: If $x>0$ this is the interval $(0,2 x)$, while if $x<0$ this is the interval $(2 x, 0)$.
4. [25 points] Suppose that (X, d) is a metric space and that $x, y, z \in X$ satisfy $d(x, z) \leq \frac{1}{4} d(x, y)$. Prove that $d(y, z) \geq \frac{3}{4} d(x, y)$.

SOLUTION

By the Triangle Inequality and symmetry property for metrics we have

$$
d(x, y) \leq d(x, z)+d(y, z)
$$

and if we substitute the assumed inequality we also have

$$
d(x, y) \leq \frac{1}{4} d(x, y)+d(y, z)
$$

If we subtract the nonnegative quantity $\frac{1}{4} d(x, y)$ from both sides of this equality we find that $d(y, z) \geq \frac{3}{4} d(x, y)$.

