Mathematics 145A, Winter 2020, Examination 1

~

Answer Key

1. [25 points] Suppose that $A \subset \mathbb{R}$ is a nonempty bounded subset whose least upper bound is M, and let 2A be the set of all numbers of the form 2a where a runs through all the elements of A. Prove that 2M is the least upper bound of 2A.

SOLUTION

Since $a \in A$ implies $a \leq M$ we know that $2a \leq 2M$ for all a and hence 2M is an upper bound for A. Suppose now that N is the least upper bound for 2A; by the preceding, we have $N \leq 2M$. Then $2a \leq N$ for all a and hence $a \leq \frac{1}{2}N$ for all $a \in A$. Therefore $\frac{1}{2}N$ is an upper bound for A and hence $M \leq \frac{1}{2}N$. If we combine the two inequalities for M and N we see that N = 2M. 2. [25 points] Let $f : \mathbb{R} \to \mathbb{R}$ be a function which need not be continuous, let d be the standard metric on \mathbb{R} , and define a new metric d^* on \mathbb{R} by $d^*(u, v) = |u - v| + |f(u) - f(v)|$. Verify that the "identity" mapping $j : (\mathbb{R}, d^*) \to (\mathbb{R}, d)$, defined by j(x) = x, is a continuous mapping of metric spaces. [*Hint:* Given $\varepsilon > 0$, one can find a corresponding $\delta > 0$ which is the same for all choices of x.]

SOLUTION

Following the hint, we want a $\delta > 0$ such that for all x we have $|u - v| < \varepsilon$ whenever $|u - v| + |f(u) - f(v)| < \delta$. Since the summands on the right hand side are nonnegative we have

$$|u - v| \leq |u - v| + |f(u) - f(v)| = d^*(u, v)$$

so $|u-v| < \varepsilon$ if the right hand side is less than ε . But this means we can take $\delta = \varepsilon$.

3. [25 points] Given the two subsets $\{0\}$ and $\mathbb{R} - \{0\}$ of the real numbers, one is open and one is not. Determine which is open and which is not open, and for each subset give reasons for your answer.

SOLUTION

If $\{0\}$ were open in the real line then some interval of the form (-h, h) would be contained in $\{0\}$. Sine h/2 > 0 belongs to this interval, there is no interval of the given form with the desired property, and therefore $\{0\}$ cannot be an open subset of the real line.

To show the complement is open, for each $x \neq 0$ we need to construct an open interval of the form (x - h, x + h) which is entirely contained in $\mathbb{R} - \{0\}$. In fact there are unique intervals where h is as large as possible: If x > 0 this is the interval (0, 2x), while if x < 0 this is the interval (2x, 0).

4. [25 points] Suppose that (X, d) is a metric space and that $x, y, z \in X$ satisfy $d(x, z) \leq \frac{1}{4}d(x, y)$. Prove that $d(y, z) \geq \frac{3}{4}d(x, y)$.

SOLUTION

By the Triangle Inequality and symmetry property for metrics we have

$$d(x,y) \leq d(x,z) + d(y,z)$$

and if we substitute the assumed inequality we also have

$$d(x,y) \leq \frac{1}{4}d(x,y) + d(y,z)$$
.

If we subtract the nonnegative quantity $\frac{1}{4}d(x,y)$ from both sides of this equality we find that $d(y,z) \geq \frac{3}{4}d(x,y)$.