Mathematics 145A, Winter 2020, Examination 2

Answer Key

1. [25 points] Let X be a topological space, and let A, B, C, D be connected subsets of X such that $A \cap B, B \cap C$ and $C \cap D$ are all nonempty. Prove that $A \cup B \cup C \cup D$ is connected.

SOLUTION

Since $A \cap B \neq \emptyset$, the union $A \cup B$ is connected. Likewise, since $\emptyset \neq B \cap C \subset(A \cup B) \cap C$, we know that $A \cup B \cup C$ is connected. Finally, since $\emptyset \neq C \cap D \subset(A \cup B \cup C) \cap D$, it follows that $A \cup B \cup C \cup D$ is connected.
2. [25 points] Let (X, d) be a metric space. Given $\varepsilon>0$ and $x \in X$ define the closed neighborhood $C N_{\varepsilon}(x)$ to be the set of all $y \in X$ such that $d(x, y) \leq \varepsilon$. General considerations imply that this set contains the closure $N_{\varepsilon}(x)$ of the open neighborhood $N_{\varepsilon}(x)$. Give examples of metric spaces where (a) these two sets are equal, (b) these two sets are unequal. [Hint: For the second one, there are simple standard subsets Y of the real line where $N_{\varepsilon}(x ; Y)$ is a closed set.]

SOLUTION

(a) If X is the closed interval $[\varepsilon, \varepsilon]$ and $x=0$, then $N_{\varepsilon}(x)=(-\varepsilon, \varepsilon)$ and its closure is $[-\varepsilon, \varepsilon]=C N_{\varepsilon}(x)=X$. (b) If X is the subset of the real line given by $\{-\varepsilon, 0, \varepsilon\}$ and $x=0$, then $N_{\varepsilon}(x)$ is just the closed set $\{0\}$ but $C N_{\varepsilon}(x)$ is once again all of X.
3. [25 points] If \mathbb{Z} and \mathbb{Q} are the integers and rational numbers respectively and $\mathbf{L}(\mathbb{Z}), \mathbf{L}(\mathbb{Q})$ denote their sets of limit points in the real numbers \mathbb{R}, then one of these sets is empty and the other is all of \mathbb{R}. State which one is empty and which is \mathbb{R}, and verify your assertion for either $\mathbf{L}(\mathbb{Z})$ or $\mathbf{L}(\mathbb{Q})$; you need not verify the other one.

SOLUTION

The set \mathbb{Z} has no limit points, and the limit point set for \mathbb{Q} is all of \mathbb{R}.
To verify the first assertion, notice that if n is an integer and U is the open neighborhood $(n-1, n+1)$ then $(U-\{n\}) \cap \mathbb{Z}=\emptyset$, so the criterion for n to be a limit point of \mathbb{Z} fails to be true.

To verify the second assertion, let $x \in \mathbb{R}$, let $x \in U$ open, and choose $h>0$ so that $(x-h, x+h) \in U$. Then we know that there are rational numbers $p \in(x-h, 0)$ and $q \in(0, x+h)$, so by construction p and q lie in the intersection $(U-\{x\}) \cap \mathbb{Q}$ and hence the latter is nonempty. The latter shows that x is a limit point of \mathbb{Q}.

According to the problem, only one of these verifications is required.
4. [25 points] Suppose that X is a topological space with at least two points, and for every pair of distinct points $p \neq q$ in X there is a continuous a continuous function $f: X \rightarrow[0,1]$ such that $f(p)=0$ and $f(q)=1$. Prove that X satisfies the Hausdorff Separation Property.

SOLUTION

If U and V are the inverse images of $\left[0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right]$ respectively, then these sets are open and disjoint subsets of X Furthermore, $p \in U$ because $f(p)=0$ and $q \in V$ because $f(q)=1$, so that U and V are disjoint open neighborhoods containing p and q respectively. Therefore X is a Hausdorff space by the definition of the Hausdorff Separation Property..
5. [25 points] Let X be a compact topological space. Prove X satisfies the following Ascending Chain Condition for open subsets:

If we are given a sequence of open subsets $U_{1} \subset U_{2} \subset U_{3} \subset \ldots$ such that $X=\cup_{n} U_{n}$, then there is some M such that $k \geq M$ implies $U_{k}=U_{M}=X$.
[Hint: Recall the proof that a compact metric space is bounded.]

SOLUTION

By construction the sets U_{n} form an open covering of X and hence there is a finite subcovering $U_{i(1)}, \cdots, U_{i(k)}$. Let M be the largest of the indices $i(j)$. Then by the assumption $U_{1} \subset U_{2} \subset U_{3} \subset \ldots$ we know that U_{M} contains all the other sets, so that U_{M} must be equal to X. Finally, since we have an increasing sequence of open sets in X it follows that $X=U_{M}=U_{k}$ for $k \geq M . ■$
6. [25 points] Suppose that (X, d) is a connected metric space with at least two points. Prove that there is a continuous real valued function f whose image contains a closed interval $[0, r]$ for some $r>0$. [Hint: The metric d is a continuous function from $X \times X$ to \mathbb{R}.]

SOLUTION

Let $x_{0} \in X$ be fixed. As indicated by the hint, $f(y)=d\left(y, x_{0}\right)$ defines a continuous real valued function on X. Since X is connected we know that $f[X] \subset \mathbb{R}$ is also connected and hence is an interval. This interval contains $0=f\left(x_{0}\right)$ and $r=f\left(y_{0}\right)>0$ where y_{0} is some point of $X-\left\{x_{0}\right\}$. Since $f[X]$ is connected it follows that this set must also contain the closed interval $[0, r]$.

