Mathematics 145A, Winter 2020, Examination 2

~

Answer Key

1. [25 points] Let X be a topological space, and let A, B, C, D be connected subsets of X such that $A \cap B$, $B \cap C$ and $C \cap D$ are all nonempty. Prove that $A \cup B \cup C \cup D$ is connected.

SOLUTION

Since $A \cap B \neq \emptyset$, the union $A \cup B$ is connected. Likewise, since $\emptyset \neq B \cap C \subset (A \cup B) \cap C$, we know that $A \cup B \cup C$ is connected. Finally, since $\emptyset \neq C \cap D \subset (A \cup B \cup C) \cap D$, it follows that $A \cup B \cup C \cup D$ is connected.

2. [25 points] Let (X, d) be a metric space. Given $\varepsilon > 0$ and $x \in X$ define the closed neighborhood $CN_{\varepsilon}(x)$ to be the set of all $y \in X$ such that $d(x, y) \leq \varepsilon$. General considerations imply that this set contains the closure $N_{\varepsilon}(x)$ of the open neighborhood $N_{\varepsilon}(x)$. Give examples of metric spaces where (a) these two sets are equal, (b) these two sets are unequal. [*Hint:* For the second one, there are simple standard subsets Y of the real line where $N_{\varepsilon}(x; Y)$ is a closed set.]

SOLUTION

(a) If X is the closed interval $[\varepsilon, \varepsilon]$ and x = 0, then $N_{\varepsilon}(x) = (-\varepsilon, \varepsilon)$ and its closure is $[-\varepsilon, \varepsilon] = CN_{\varepsilon}(x) = X$. (b) If X is the subset of the real line given by $\{-\varepsilon, 0, \varepsilon\}$ and x = 0, then $N_{\varepsilon}(x)$ is just the closed set $\{0\}$ but $CN_{\varepsilon}(x)$ is once again all of X.

3. [25 points] If \mathbb{Z} and \mathbb{Q} are the integers and rational numbers respectively and $\mathbf{L}(\mathbb{Z})$, $\mathbf{L}(\mathbb{Q})$ denote their sets of limit points in the real numbers \mathbb{R} , then one of these sets is empty and the other is all of \mathbb{R} . State which one is empty and which is \mathbb{R} , and verify your assertion for either $\mathbf{L}(\mathbb{Z})$ or $\mathbf{L}(\mathbb{Q})$; you need not verify the other one.

SOLUTION

The set \mathbb{Z} has no limit points, and the limit point set for \mathbb{Q} is all of \mathbb{R} .

To verify the first assertion, notice that if n is an integer and U is the open neighborhood (n-1, n+1) then $(U - \{n\}) \cap \mathbb{Z} = \emptyset$, so the criterion for n to be a limit point of \mathbb{Z} fails to be true.

To verify the second assertion, let $x \in \mathbb{R}$, let $x \in U$ open, and choose h > 0 so that $(x - h, x + h) \in U$. Then we know that there are rational numbers $p \in (x - h, 0)$ and $q \in (0, x + h)$, so by construction p and q lie in the intersection $(U - \{x\}) \cap \mathbb{Q}$ and hence the latter is nonempty. The latter shows that x is a limit point of \mathbb{Q} .

According to the problem, only one of these verifications is required.

4. [25 points] Suppose that X is a topological space with at least two points, and for every pair of distinct points $p \neq q$ in X there is a continuous a continuous function $f: X \rightarrow [0, 1]$ such that f(p) = 0 and f(q) = 1. Prove that X satisfies the Hausdorff Separation Property.

SOLUTION

If U and V are the inverse images of $[0, \frac{1}{2})$ and $(\frac{1}{2}, 1]$ respectively, then these sets are open and disjoint subsets of X Furthermore, $p \in U$ because f(p) = 0 and $q \in V$ because f(q) = 1, so that U and V are disjoint open neighborhoods containing p and q respectively. Therefore X is a Hausdorff space by the definition of the Hausdorff Separation Property. 5. [25 points] Let X be a compact topological space. Prove X satisfies the following Ascending Chain Condition for open subsets:

If we are given a sequence of open subsets $U_1 \subset U_2 \subset U_3 \subset ...$ such that $X = \bigcup_n U_n$, then there is some M such that $k \ge M$ implies $U_k = U_M = X$.

[*Hint:* Recall the proof that a compact metric space is bounded.]

SOLUTION

By construction the sets U_n form an open covering of X and hence there is a finite subcovering $U_{i(1)}, \dots, U_{i(k)}$. Let M be the largest of the indices i(j). Then by the assumption $U_1 \subset U_2 \subset U_3 \subset \ldots$ we know that U_M contains all the other sets, so that U_M must be equal to X. Finally, since we have an increasing sequence of open sets in Xit follows that $X = U_M = U_k$ for $k \geq M$. 6. [25 points] Suppose that (X, d) is a connected metric space with at least two points. Prove that there is a continuous real valued function f whose image contains a closed interval [0, r] for some r > 0. [*Hint:* The metric d is a continuous function from $X \times X$ to \mathbb{R} .]

SOLUTION

Let $x_0 \in X$ be fixed. As indicated by the hint, $f(y) = d(y, x_0)$ defines a continuous real valued function on X. Since X is connected we know that $f[X] \subset \mathbb{R}$ is also connected and hence is an interval. This interval contains $0 = f(x_0)$ and $r = f(y_0) > 0$ where y_0 is some point of $X - \{x_0\}$. Since f[X] is connected it follows that this set must also contain the closed interval [0, r].