
Mathematics 145A, Winter 2014, Examination 2

Answer Key
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1. [25 points] Let U be the usual topology on the real numbers R, and let V be the
topology consisting of the empty set, the entire real line, and all open rays of the form
(c, +∞), where c ∈ R.

(i) Let f : (R,U) → (R,V) and g : (R,V) → (R,U) be the respective identity map-
pings. Which (if any) of the maps f, g is/are continuous?

(ii) Show that (R,V) is not Hausdorff. [Hint: Given a pair of distinct points in R,
one of them is larger than the other. What are the open subsets containing a given point?]

SOLUTION

(i) The topology V is strictly contained in U , for every V-open subset is U -open, but V
does not contain an open interval of the form (a, b) where b < +∞. Therefore the identity
map f : (R,U) → (R,V) satisfies the condition for continuity but the inverse identity map
g : (R,V) → (R,U) does not.

(ii) Since the nonempty open subsets for V have the form (c, +∞), if x < y and x ∈ W
for some W in V, then we also have y ∈ W . Therefore every open subset containing x
contains y. If (R,V) were a Hausdorff space one could find disjoint open U and V such that
x ∈ U and y ∈ V . Since this does not happen in (R,V), the latter cannot be Hausdorff.

Alternatively, we know that a one point subset {x} is never closed because its comple-
ment W = (−∞, x)∪ (x, +∞) is never open; in particular, we have x− 1 ∈ W but x 6∈ W ,
so the condition in the first sentence of the preceding paragraph is not satisfied. If (R,V)
were Hausdorff, then all complements of one point subsets would be open, and since this
is not the case the space (R,V) is not Hausdorff.
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2. [25 points] (i) Show that the set of limit points for the closed interval [0, 1] is
equal to all of [0, 1].

(ii) If A is a subset of a topological space X and A is not open, explain why the
interior of A must be a proper subset of A.

SOLUTION

(i) First of all, since [0, 1] is a closed set, all of its limit points must lie inside itself. To
complete the exercise, we must show that every point is a limit point. For the endpoints,
we can do this using sequences an = 1

n
for the endpoint 0 (because an 6= 0 for all n and

the limit is 0) and an = 1 − 1

n
for the endpoint 1 (because an 6= 1 for all n and the limit

is 1). If 0 < t < 1 we can use the sequences an = t + (1 − t)/n, whose values are never t
and whose limits are t.

Alternatively, we can use the definition of limit point directly. To see that 0 and
1 are limit points, let ε > 0 and choose h such that 0 < h < 1 and h < ε/2. Then
h ∈ Nε(0; [0, 1]) − {0} and 1 − h ∈ Nε(1; [0, 1]) − {1}. To see that every other point is a
limit point, suppose that 0 < t < 1 and ε > 0. Without loss of generality, we may restrict
attention to values of ε such that Nε(t) = (t − ε, t + ε) is contained in the open interval
(0, 1). Then we have t + 1

2
ε ∈ (Nε(t) − {t}) ∩ [0, 1].

(ii) By definition, the interior Int A of A is an open subset of X, and it is contained
in A. If A is not open, then A cannot be equal to the open set Int A, and therefore the
inclusion of Int A in A must be proper.
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3. [25 points] (i) If X and Y are topological spaces in which one point subsets are
closed, prove that X × Y (with the product topology) also has this property. [Hint: If E
and F are closed in X and Y , why is E × F closed in the product?]

(ii) Let X be a topological space, and let A be a family of open subsets such that for
each open set U and each x ∈ U there is some V in A such that x ∈ V and V ⊂ U . Prove
that A is a base for the topology on X.

SOLUTION

(i) If πX : X × Y → X and πY : X × Y → Y are the coordinate projections, they are
continuous, and hence E closed in X and F closed in Y imply that

E × F = π−1

X
[E] ∩ π−1

Y
[F ]

is closed in X ×Y . If (x, y) ∈ X ×Y , then the conditions in the problem imply that {x} is
closed in X and {y} is closed in Y , and if we specialize the preceding discussion to these
cases we find that

{(x, y)} = {x} × {y}

is closed in the product.

(ii) We need to show that every open set U in X is a union of open subsets from A.
Given x ∈ U , pick Ax in A such that x ∈ Ax ⊂ U . Then we have

U =
⋃

x∈U

{x} ⊂
⋃

x∈U

Ax ⊂ U

which implies that U is the union of the open subsets Ax.
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4. [25 points] Let X be a topological space, and let A1, A2, A3, A4 be connected
subsets such that for Ak ∩Ak−1 is nonempty for k = 2, 3, 4. Prove that A1 ∪A2 ∪A3 ∪A4

is connected.

SOLUTION

Since A2 has a nonempty intersection with A1 and A3, we know that B = A1∪A2∪A3

is connected by a result in Sutherland. But A4 is also connected and A4∩B ⊃ A4∩A3 6= ∅,
so another application of the same result implies that A1∪A2∪A3∪A4 is also connected.

Note. A similar result holds for a finite sequence of connected subsets A1, · · · , An

such that for Ak ∩ Ak−1 is nonempty for 2 ≤ k ≤ n, in which case the conclusion is that
the union ∪k Ak is connected. — If n = 1 the result is trivial, so assume it is true when
there are n− 1 sets. Then the induction hypothesis implies that Bn−1 = A1 ∪ · · · ∪An−1

is connected, and the objective is to prove that Bn = Bn−1 ∪ An is connected.

As in the solution for the special case, we know that An is connected and An∩Bn−1 ⊃
An ∩An−1 6= ∅, so another application of the result cited in the first paragraph will imply
that Bn = An ∪ Bn−1 is also connected. .
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