Mathematics 145A, Winter 2014, Examination 2

Answer Key

1. [25 points] Let \mathcal{U} be the usual topology on the real numbers \mathbb{R}, and let \mathcal{V} be the topology consisting of the empty set, the entire real line, and all open rays of the form $(c,+\infty)$, where $c \in \mathbb{R}$.
(i) Let $f:(\mathbb{R}, \mathcal{U}) \rightarrow(\mathbb{R}, \mathcal{V})$ and $g:(\mathbb{R}, \mathcal{V}) \rightarrow(\mathbb{R}, \mathcal{U})$ be the respective identity mappings. Which (if any) of the maps f, g is/are continuous?
(ii) Show that $(\mathbb{R}, \mathcal{V})$ is not Hausdorff. [Hint: Given a pair of distinct points in \mathbb{R}, one of them is larger than the other. What are the open subsets containing a given point?]

SOLUTION

(i) The topology \mathcal{V} is strictly contained in \mathcal{U}, for every \mathcal{V}-open subset is \mathcal{U}-open, but \mathcal{V} does not contain an open interval of the form (a, b) where $b<+\infty$. Therefore the identity $\operatorname{map} f:(\mathbb{R}, \mathcal{U}) \rightarrow(\mathbb{R}, \mathcal{V})$ satisfies the condition for continuity but the inverse identity map $g:(\mathbb{R}, \mathcal{V}) \rightarrow(\mathbb{R}, \mathcal{U})$ does not.■
(ii) Since the nonempty open subsets for \mathcal{V} have the form $(c,+\infty)$, if $x<y$ and $x \in W$ for some W in \mathcal{V}, then we also have $y \in W$. Therefore every open subset containing x contains y. If $(\mathbb{R}, \mathcal{V})$ were a Hausdorff space one could find disjoint open U and V such that $x \in U$ and $y \in V$. Since this does not happen in $(\mathbb{R}, \mathcal{V})$, the latter cannot be Hausdorff.

Alternatively, we know that a one point subset $\{x\}$ is never closed because its complement $W=(-\infty, x) \cup(x,+\infty)$ is never open; in particular, we have $x-1 \in W$ but $x \notin W$, so the condition in the first sentence of the preceding paragraph is not satisfied. If $(\mathbb{R}, \mathcal{V})$ were Hausdorff, then all complements of one point subsets would be open, and since this is not the case the space $(\mathbb{R}, \mathcal{V})$ is not Hausdorff.
2. [25 points] (i) Show that the set of limit points for the closed interval $[0,1]$ is equal to all of $[0,1]$.
(ii) If A is a subset of a topological space X and A is not open, explain why the interior of A must be a proper subset of A.

SOLUTION

(i) First of all, since $[0,1]$ is a closed set, all of its limit points must lie inside itself. To complete the exercise, we must show that every point is a limit point. For the endpoints, we can do this using sequences $a_{n}=\frac{1}{n}$ for the endpoint 0 (because $a_{n} \neq 0$ for all n and the limit is 0) and $a_{n}=1-\frac{1}{n}$ for the endpoint 1 (because $a_{n} \neq 1$ for all n and the limit is 1). If $0<t<1$ we can use the sequences $a_{n}=t+(1-t) / n$, whose values are never t and whose limits are t.

Alternatively, we can use the definition of limit point directly. To see that 0 and 1 are limit points, let $\varepsilon>0$ and choose h such that $0<h<1$ and $h<\varepsilon / 2$. Then $h \in N_{\varepsilon}(0 ;[0,1])-\{0\}$ and $1-h \in N_{\varepsilon}(1 ;[0,1])-\{1\}$. To see that every other point is a limit point, suppose that $0<t<1$ and $\varepsilon>0$. Without loss of generality, we may restrict attention to values of ε such that $N_{\varepsilon}(t)=(t-\varepsilon, t+\varepsilon)$ is contained in the open interval $(0,1)$. Then we have $t+\frac{1}{2} \varepsilon \in\left(N_{\varepsilon}(t)-\{t\}\right) \cap[0,1]$.
(ii) By definition, the interior $\operatorname{Int} A$ of A is an open subset of X, and it is contained in A. If A is not open, then A cannot be equal to the open set $\operatorname{Int} A$, and therefore the inclusion of $\operatorname{Int} A$ in A must be proper.
3. [25 points] (i) If X and Y are topological spaces in which one point subsets are closed, prove that $X \times Y$ (with the product topology) also has this property. [Hint: If E and F are closed in X and Y, why is $E \times F$ closed in the product?]
(ii) Let X be a topological space, and let \mathcal{A} be a family of open subsets such that for each open set U and each $x \in U$ there is some V in \mathcal{A} such that $x \in V$ and $V \subset U$. Prove that \mathcal{A} is a base for the topology on X.

SOLUTION

(i) If $\pi_{X}: X \times Y \rightarrow X$ and $\pi_{Y}: X \times Y \rightarrow Y$ are the coordinate projections, they are continuous, and hence E closed in X and F closed in Y imply that

$$
E \times F=\pi_{X}^{-1}[E] \cap \pi_{Y}^{-1}[F]
$$

is closed in $X \times Y$. If $(x, y) \in X \times Y$, then the conditions in the problem imply that $\{x\}$ is closed in X and $\{y\}$ is closed in Y, and if we specialize the preceding discussion to these cases we find that

$$
\{(x, y)\}=\{x\} \times\{y\}
$$

is closed in the product.■
(ii) We need to show that every open set U in X is a union of open subsets from \mathcal{A}. Given $x \in U$, pick A_{x} in \mathcal{A} such that $x \in A_{x} \subset U$. Then we have

$$
U=\bigcup_{x \in U}\{x\} \subset \bigcup_{x \in U} A_{x} \subset U
$$

which implies that U is the union of the open subsets A_{x}.
4. [25 points] Let X be a topological space, and let $A_{1}, A_{2}, A_{3}, A_{4}$ be connected subsets such that for $A_{k} \cap A_{k-1}$ is nonempty for $k=2,3,4$. Prove that $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ is connected.

SOLUTION

Since A_{2} has a nonempty intersection with A_{1} and A_{3}, we know that $B=A_{1} \cup A_{2} \cup A_{3}$ is connected by a result in Sutherland. But A_{4} is also connected and $A_{4} \cap B \supset A_{4} \cap A_{3} \neq \emptyset$, so another application of the same result implies that $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ is also connected..

Note. A similar result holds for a finite sequence of connected subsets A_{1}, \cdots, A_{n} such that for $A_{k} \cap A_{k-1}$ is nonempty for $2 \leq k \leq n$, in which case the conclusion is that the union $\cup_{k} A_{k}$ is connected. - If $n=1$ the result is trivial, so assume it is true when there are $n-1$ sets. Then the induction hypothesis implies that $B_{n-1}=A_{1} \cup \cdots \cup A_{n-1}$ is connected, and the objective is to prove that $B_{n}=B_{n-1} \cup A_{n}$ is connected.

As in the solution for the special case, we know that A_{n} is connected and $A_{n} \cap B_{n-1} \supset$ $A_{n} \cap A_{n-1} \neq \emptyset$, so another application of the result cited in the first paragraph will imply that $B_{n}=A_{n} \cup B_{n-1}$ is also connected.■.

