Mathematics 145A, Winter 2016, Examination 2

Answer Key

1. [25 points] (i) Suppose that X is a topological space and $A \subset X$ is not closed in X. Explain why A is properly contained in its closure \bar{A} (in X).
(ii) Suppose that $\left(X_{1}, \mathcal{U}_{1}\right)$ and $\left(X_{2}, \mathcal{U}_{2}\right)$ are topological spaces. Describe the product topology on $X_{1} \times X_{2}$ in terms of the open subsets in \mathcal{U}_{1} and \mathcal{U}_{2}.

SOLUTION

(i) By definition the closure C of a subset A is a closed set containing A, and if A is not closed then C cannot be equal to A. Since $A \subset C$ but $A \neq C$, this means that A must be properly contained in C.■
(ii) The product topology is generated by all subsets of the form $V_{1} \times V_{2}$, where V_{1} is an open subset in X_{1} and V_{2} is an open subset in X_{2}. In fact, it is the family of all subsets which are unions of such products.■
2. [25 points] Suppose that $X \subset \mathbb{R}^{2}$ is a union $A \cup B$ where

$$
A=[-2,2] \times[-1,1], \quad B=[-1,1] \times[-2,2] .
$$

Prove that X is arcwise connected. [Hint: Sketch the region in the coordinate plane.]

SOLUTION

First of all, by construction each of A and B is a product of two arcwise connected subspaces, and hence each is arcwise connected. Furthermore, the intersection $A \cap B$ is nonempty because it is $[-1,1] \times[-1,1]$. Since the union of two arcwise connected subspaces is arcwise connected if their intersection is nonempty, it follows that $A \cup B$ is also arcwise connected.
3. [25 points] Suppose that the topological space X is the union of two subsets $A \cup B$ such that both A and B are compact. Prove that $A \cup B$ is also compact. [Hint: Given an open covering \mathcal{U} of X, consider the induced open coverings of A and B.]

SOLUTION

Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ be an open covering of X, and for each α let $V_{\alpha}=U_{\alpha} \cap A$ and $W_{\alpha}=U_{\alpha} \cap B$. Consider the associated open coverings $\mathcal{V}=\left\{V_{\alpha}\right\}$ of A and $\mathcal{W}=\left\{W_{\alpha}\right\}$ of B. Since both A and B are compact there are finite subcoverings $\left\{V_{\alpha(1)}, \cdots, V_{\alpha(k)}\right\}$ and $\left\{W_{\alpha(k+1)}, \cdots, W_{\alpha(k+m)}\right\}$ of A and B respectively. By the definitions of the sets in the subcoverings we have $A \subset U_{\alpha(1)} \cup \cdots \cup U_{\alpha(k)}$ and $B \subset U_{\alpha(k+1)} \cup \cdots \cup U_{\alpha(k+m)}$. Since $X=A \cup B$, it follows that $\left\{U_{\alpha(1)}, \cdots, U_{\alpha(k+m)}\right\}$ is a finite subcovering of X. Since \mathcal{U} was an arbitrary open covering, this means that X must be compact.
4. [25 points] (i) Give an example of a nonmetrizable space (in other words a topological space (X, \mathcal{U}) which is not the underlying topological space for some metric space $(X, d))$.
(ii) State which of the following statements is/are true and which is/are false. Reasons are not needed for correct answers, but for incorrect answers they may yield partial credit.

The interval $\left(\frac{1}{2}, 1\right]$ is open in \mathbb{R}.
The interval $\left(\frac{1}{2}, 1\right]$ is open in $(0,1]$ with respect to the subspace topology.
The interval $\left(\frac{1}{2}, 1\right]$ is closed in \mathbb{R}.
The interval $\left(\frac{1}{2}, 1\right]$ is closed $(0,1]$ in with respect to the subspace topology.

SOLUTION

(i) There are many possibilities; perhaps the two simplest ones are the indiscrete topology on a set with more than one element and the finitary topology on an infinite set.t
(ii) We shall consider the statements in the order in which they are listed.

The first statement is FALSE because $1 \in\left(\frac{1}{2}, 1\right]$ and $\left(\frac{1}{2}, 1\right]$ does not contain an open interval of the form $(1-\delta, 1+\delta)$.

The second statement is TRUE because $\left(\frac{1}{2}, 1\right]=(0,1] \cap\left(\frac{1}{2}, \frac{3}{2}\right)$ and the right hand side is an open subset in the subspace topology.
The third statement is FALSE because $\frac{1}{2}$ is a limit point of $\left(\frac{1}{2}, 1\right]$ in \mathbb{R} but does not belong to that interval.
The fourth statement is FALSE because $\frac{1}{2}$ is a limit point of $\left(\frac{1}{2}, 1\right]$ in $(0,1]$ but does not belong to $(0,1]$.

