# Mathematics 145A, Winter 2017, Examination 2 

Answer Key

1. [20 points] Suppose that $(X, d)$ is a metric space, let $a \in X$, let $\delta>0$, and let $W_{\delta}(a)$ be the set of all $x \in X$ such that $d(a, x)>\delta$. Prove that $W_{\delta}(a)$ is an open subset of $X$. [Hint: The Triangle Inequality implies that $d(x, y) \geq|d(x, z)-d(y, z)|$; you may use this without proof.]

## SOLUTION

Suppose that $y \in W_{\delta}(a)$, so that $d(a, y)=\delta+h$ for some $h>0$. Therefore if $d(x, y)<h$ then we have $d(x, a) \geq d(x, y)-d(a, y)=\delta+h-d(a, y)>\delta+h-h>\delta$, which means that $x \in W_{\delta}(a)$. Therefore $W_{\delta}(a)$ is open.■
2. [30 points] (a) Show that the (countably infinite) intersection of the open intervals $\left(-\frac{1}{n}, 1\right)$ is not an open subset of the real line.
(b) A subset $A$ of a metric space is said to be a $G_{\delta}$ set if it is a countable intersection $\cap_{n} V_{n}$ of open subsets $V_{n}$. Show that if $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous and $A \subset Y$ is a $G_{\delta}$ set, then so is $f^{-1}[A]$.

## SOLUTION

(a) The intersection is the set of points $t$ such that $t<1$ and $t \geq-\frac{1}{n}$ for all $n$. The second conditions are equivalent to the inequality $t \geq 0$. Therefore the intersection is equal to $[0,1)$, which is not an open subset..
(b) Express $A=\cap_{n} V_{n}$ where each $V_{n}$ is open in $Y$. Then we have

$$
f^{-1}[A]=f^{-1}\left[\cap_{n} V_{n}\right]=\cap_{n} f^{-1}\left[V_{n}\right]
$$

and hence $f^{-1}[A]$ is a $G_{\delta}$ set.■
3. [25 points] Recall that the taxicab separation $d_{T}$ between two points on the coordinate plane $\mathbb{R}^{2}$ is defined as follows: If $p=\left(x_{1}, y_{1}\right)$ and $q=\left(x_{2}, y_{2}\right)$, then $d_{T}(p, q)=$ $\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$. Prove that $d_{T}$ defines a metric on $\mathbb{R}^{2}$.

## SOLUTION

The right hand side is a sum of two absolute values, and since each of the latter is nonnegative so is $d_{T}$.

If $d_{T}(p, q)=0$, then $0=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$ implies that each of the two nonnegative summands is zero. But now $0=\left|x_{2}-x_{1}\right|$ and $0=\left|y_{2}-y_{1}\right|$ imply $x_{1}=x_{2}$ and $y_{1}=y_{2}$, which means that $p=q$.■

The function $d_{T}$ is symmetric in $p$ and $q$, for $|u-v|=|v-u|$ implies that

$$
d_{T}(p, q)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=d_{T}(q, p)
$$

To prove the Triangle Inequality, first observe that $|c-a| \leq|c-b|+|b-a|$ for all $u, v \in \mathbb{R}$. If $r=\left(x_{3}, y_{3}\right)$ then

$$
\begin{gathered}
d_{T}(p, q)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| \leq\left(\left|x_{2}-x_{3}\right|+\left|x_{3}-x_{1}\right|\right)+\left(\left|y_{2}-y_{3}\right|+\left|y_{3}-y_{1}\right|\right)= \\
\left(\left|x_{2}-x_{3}\right|+\left|y_{2}-y_{3}\right|\right)+\left(\left|x_{3}-x_{1}\right|+\left|y_{3}-y_{1}\right|\right)=d_{T}(p, r)+d_{T}(r, q)
\end{gathered}
$$

which verifies the Triangle Inequality for $d_{T}$. We have now verified all of the conditions for $d_{T}$ to be a metric.
4. [25 points] (a) A map $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ of metric spaces is said to satisfy a Lipschitz condition if there is some constant $K_{f}>0$ such that $d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq K_{f}$. $d_{X}\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in X$ (by one of the practice exercises we know that $f$ is uniformly continuous). Prove that if $f$ and $g:\left(Y, d_{Y}\right) \rightarrow\left(Z, d_{Z}\right)$ both satisfy Lipschitz conditions then so does their composite $g \circ f$.
(b) If $X$ be a metric space, and let $T: X \times X \rightarrow X \times X$ be the coordinate transposition map sending $\left(x, x^{\prime}\right)$ to $\left(x^{\prime}, x\right)$. Prove that $T$ is continuous with respect to a standard metric on $X \times X$. [Hint: It does not matter which of the product metrics $d_{1}, d_{2}$ or $d_{\infty}$ is used.]

## SOLUTION

(a) The hypotheses imply that there are constants $K_{f}>0$ and $K_{g}>0$ such that $d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq K_{f} \cdot d_{X}\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in X$ and $d_{Z}\left(g(y), g\left(y^{\prime}\right)\right) \leq K_{g} \cdot d_{Y}\left(y, y^{\prime}\right)$ for all $y, y^{\prime} \in Y$. Therefore we have

$$
d_{Z}\left(g^{\circ} f(x), g \circ f\left(x^{\prime}\right)\right) \leq K_{g} \cdot d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq K_{g} \cdot K_{f} \cdot d_{X}\left(x, x^{\prime}\right)
$$

and hence $g \circ f$ also satisfies a Lipschitz condition.■
(b) Let $p_{1}: X \times X \rightarrow X$ and $p_{2}: X \times X \rightarrow X$ denote projection onto the first and second factors respectively. Then we know that $T$ is continuous if and only if each of the coordinate functions $p_{1}{ }^{\circ} T$ and $p_{2}{ }^{\circ} T$ are continuous. But $p_{1}{ }^{\circ} T=p_{2}$ and $p_{2}{ }^{\circ} T=p_{1}$; since the coordinate projection functions $p_{1}$ and $p_{2}$ are continuous, it follows that $T$ is also continuous.

