Mathematics 145A, Winter 2019, Examination 2

~

Answer Key

1. [25 points] A subset of a topological space X is said to be locally closed if it can be written as $F \cap V$ where F is closed in X and V is open in X. Prove that every open subset is locally closed, and likewise for every closed subset. Give an example of a connected subset of \mathbb{R} which locally closed but neither open nor closed. [Hint: The space X is an open and closed subset of itself.]

SOLUTION

If U is open then $U = X \cap U$ is locally closed because X is closed in itself. If F is closed then $F = X \cap F$ is locally closed because X is open in itself. In \mathbb{R} the half-open interval $[0,1) = (-\infty,1) \cap [0,\infty)$ where the first set is open and the second is closed, so [0,1) is locally closed. It is not closed because 1 is a limit point which is not in the set, and it is not open because no open interval of the form $\left(-\frac{1}{n}, \frac{1}{n}\right)$ is contained in it.

2. [25 points] Suppose that the topological space X is a union $A \cup B$ where both A and B are closed subsets of X, and let $f: X \to Y$ be a map of sets such that the restrictions f|A and f|B are continuous. Prove that f itself must be continuous. [Hint: If C is a subset of X, then $C = (C \cap A) \cup (C \cap B)$, and if $E \subset X$ then $(f|E)^{-1}[D] = E \cap f^{-1}[D]$.]

SOLUTION

We shall show that if F is closed in Y then $f^{-1}[F]$ is closed in X. The continuity hypotheses and the hints imply that

$$(f|A)^{-1}[F] = A \cap f^{-1}[F]$$
, $(f|B)^{-1}[F] = B \cap f^{-1}[F]$

are both closed subsets of X. Since $X = A \cup B$ we have

$$f^{-1}[F] = \left(A \cap f^{-1}[F]\right) \cup \left(B \cap f^{-1}[F]\right) = (f|A)^{-1}[F] \cup (f|B)^{-1}[F]$$

is a union of two closed subsets and hence is also closed, proving the statement in the first sentence of this paragraph. \blacksquare

3. [25 points] Using the definition for the boundary (frontier) of a subset, show that the boundary of both the open interval $(0,1) \subset \mathbb{R}$ and the closed interval $[0,1] \subset \mathbb{R}$ is the set $\{0,1\}$ of endpoints.

SOLUTION

By definition, Bdy(A) = Closure(A) - Interior(A), so we have to descrive both of these sets when A is the open unit interval. The closure is [0,1] because this is a closed set containing (0,1), and each endpoint is a limit point (the endpoints are the limits of the sequences

$$\frac{1}{n}$$
, $\frac{n-1}{n}$

as $n \to \infty$). The interior of A is simply A itself because A is an open subset of \mathbb{R} . Therefore the boundary is the complement of (0, 1) in [0, 1], which is just the set $\{0, 1\}$ of endpoints.

4. [25 points] Suppose that X is a topological space and X is a union $A \cup B$ where A and B are closed subsets of X. Prove that X is \mathbf{T}_1 if both A and B are.

SOLUTION

Let $p \in X$. If $t \in A$, then by hypothesis $\{p\}$ is a closed subset of A in the subspace topology, and since A is a closed subset of X it follows that $\{p\}$ is a closed subset of X. On the other hand, if $p \in B$ then similar reasoning applies with B replacing A throughout. Therefore $\{p\}$ is a closed subset of X in all cases, which means that X is \mathbf{T}_1 .

5. [25 points]

Let A be an arbitrary subset of the unit circle $S^1 \subset \mathbb{R}^2$, which is all points v = (x, y)such that $|v|^2 = x^2 + y^2 = 1$, and let $X_A \subset \mathbb{R}^2$ be the union of A and the open disk defined by $x^2 + y^2 < 1$. Show that X_A is arcwise connected (in fact, it is convex, but it is not necessary to show this).

SOLUTION

We know that the open disk of radiuis 1 is arcwise connected because every point p in it can be joined to the origin by a closed curve of the form (1 - t)p, where $t \in [0, 1]$. We further claim that every point in $a \in A$ can be joined to the origin by a similar curve (1 - t)a, so the only thing to check is that the curve always stays inside X_A . This is true for t = 0 when the curve starts at a. But if t > 0 then |a| = 1 and $0 \le (1 - t) < 1$ implies that (1 - t)a lies in the open disk. Therefore the given curve joins $a \in S^1$ to the origin by a curve entirely within X_A .

6. [25 points] Suppose that A and B are compact subsets of a metric space X. Show that $A \cap B$ is also compact.

SOLUTION

Let \mathcal{U} be an open covering of $A \cup B$, and let \mathcal{U}_A and \mathcal{U}_B denote the intersections of open sets in U with A and B respectively. Then the latter two are open coverings of A and B respectively and hence there are finite subcoverings of A and B having the forms

$$\mathcal{V}_A = \{ U_{A,1} \cap A, \cdots, U_{A,m} \cap A \}, \quad \mathcal{V}_B = \{ U_{B,1} \cap B, \cdots, U_{B,m} \cap B \}$$

respectively. It follows that the sets $U_{A,i}$ and $U_{B,j}$ combine to form a finite subcovering of $A \cup B$.