Mathematics 145A, Winter 2019, Examination 2

Answer Key

1. [25 points] A subset of a topological space X is said to be locally closed if it can be written as $F \cap V$ where F is closed in X and V is open in X. Prove that every open subset is locally closed, and likewise for every closed subset. Give an example of a connected subset of \mathbb{R} which locally closed but neither open nor closed. [Hint: The space X is an open and closed subset of itself.]

SOLUTION

If U is open then $U=X \cap U$ is locally closed because X is closed in itself. If F is closed then $F=X \cap F$ is locally closed because X is open in itself. In \mathbb{R} the half-open interval $[0,1)=(-\infty, 1) \cap[0, \infty)$ where the first set is open and the second is closed, so $[0,1)$ is locally closed. It is not closed because 1 is a limit point which is not in the set, and it is not open because no open interval of the form $\left(-\frac{1}{n}, \frac{1}{n}\right)$ is contained in it.
2. [25 points] Suppose that the topological space X is a union $A \cup B$ where both A and B are closed subsets of X, and let $f: X \rightarrow Y$ be a map of sets such that the restrictions $f \mid A$ and $f \mid B$ are continuous. Prove that f itself must be continuous. [Hint: If C is a subset of X, then $C=(C \cap A) \cup(C \cap B)$, and if $E \subset X$ then $\left.(f \mid E)^{-1}[D]=E \cap f^{-1}[D].\right]$

SOLUTION

We shall show that if F is closed in Y then $f^{-1}[F]$ is closed in X. The continuity hypotheses and the hints imply that

$$
(f \mid A)^{-1}[F]=A \cap f^{-1}[F], \quad(f \mid B)^{-1}[F]=B \cap f^{-1}[F]
$$

are both closed subsets of X. Since $X=A \cup B$ we have

$$
f^{-1}[F]=\left(A \cap f^{-1}[F]\right) \cup\left(B \cap f^{-1}[F]\right)=(f \mid A)^{-1}[F] \cup(f \mid B)^{-1}[F]
$$

is a union of two closed subsets and hence is also closed, proving the statement in the first sentence of this paragraph.
3. [25 points] Using the definition for the boundary (frontier) of a subset, show that the boundary of both the open interval $(0,1) \subset \mathbb{R}$ and the closed interval $[0,1] \subset \mathbb{R}$ is the set $\{0,1\}$ of endpoints.

SOLUTION

By definition, $\operatorname{Bdy}(A)=\operatorname{Closure}(A)-\operatorname{Interior}(A)$, so we have to descrive both of these sets when A is the open unit interval. The closure is $[0,1]$ because this is a closed set containing $(0,1)$, and each endpoint is a limit point (the endpoints are the limits of the sequences

$$
\frac{1}{n}, \quad \frac{n-1}{n}
$$

as $n \rightarrow \infty)$. The interior of A is simply A itself because A is an open subset of \mathbb{R}. Therefore the boundary is the complement of $(0,1)$ in $[0,1]$, which is just the set $\{0,1\}$ of endpoints.
4. [25 points] Suppose that X is a topological space and X is a union $A \cup B$ where A and B are closed subsets of X. Prove that X is \mathbf{T}_{1} if both A and B are.

SOLUTION

Let $p \in X$. If $t \in A$, then by hypothesis $\{p\}$ is a closed subset of A in the subspace topology, and since A is a closed subset of X it follows that $\{p\}$ is a closed subset of X. On the other hand, if $p \in B$ then similar reasoning applies with B replacing A throughout. Therefore $\{p\}$ is a closed subset of X in all cases, which means that X is \mathbf{T}_{1}.

5. [25 points]

Let A be an arbitrary subset of the unit circle $S^{1} \subset \mathbb{R}^{2}$, which is all points $v=(x, y)$ such that $|v|^{2}=x^{2}+y^{2}=1$, and let $X_{A} \subset \mathbb{R}^{2}$ be the union of A and the open disk defined by $x^{2}+y^{2}<1$. Show that X_{A} is arcwise connected (in fact, it is convex, but it is not necessary to show this).

SOLUTION

We know that the open disk of radiuis 1 is arcwise connected because every point p in it can be joined to the origin by a closed curve of the form $(1-t) p$, where $t \in[0,1]$. We further claim that every point in $a \in A$ can be joined to the origin by a similar curve $(1-t) a$, so the only thing to check is that the curve always stays inside X_{A}. This is true for $t=0$ when the curve starts at a. But if $t>0$ then $|a|=1$ and $0 \leq(1-t)<1$ implies that $(1-t) a$ lies in the open disk. Therefore the given curve joins $a \in S^{1}$ to the origin by a curve entirely within X_{A}.
6. [25 points] Suppose that A and B are compact subsets of a metric space X. Show that $A \cap B$ is also compact.

SOLUTION

Let \mathcal{U} be an open covering of $A \cup B$, and let \mathcal{U}_{A} and \mathcal{U}_{B} denote the intersections of open sets in U with A and B respectively. Then the latter two are open coverings of A and B respectively and hence there are finite subcoverings of A and B having the forms

$$
\mathcal{V}_{A}=\left\{U_{A, 1} \cap A, \cdots, U_{A, m} \cap A\right\}, \quad \mathcal{V}_{B}=\left\{U_{B, 1} \cap B, \cdots, U_{B, m} \cap B\right\}
$$

respectively. It follows that the sets $U_{A, i}$ and $U_{B, j}$ combine to form a finite subcovering of $A \cup B$.

