ADDITIONAL EXERCISES FOR

MATHEMATICS 145A — Part 1

Fall 2014

2. Notations and terminology

0. Given a set X and a binary relation \mathcal{R} on X, define a new binary relation $\mathcal{R}^{\#}$ on X such that $x \mathcal{R}^{\#} y$ if and only if x = y or there is a finite sequence v_0, \dots, v_m such that $v_0 = x, v_m = y$ and for each *i* we have either $v_i \mathcal{R} v_{i+1}$ or $v_{i+1} \mathcal{R} v_i$. Prove that $\mathcal{R}^{\#}$ is an equivalence relation on X, and if S is an equivalence relation such that $x \mathcal{S} y$ whenever $x \mathcal{R} y$, then we also have $x \mathcal{S} y$ whenever $x \mathcal{R}^{\#} y$. — The latter implies that $\mathcal{R}^{\#}$ is the minimal equivalence relation on X such that x and y are equivalent whenever $x \mathcal{R} y$, and it is called the equivalence relation generated by \mathcal{R} .

1. The game of chess is played on an 8×8 board with squares alternately colored black and white (or some other pair of contrasting colors). A chess player is likely to notice very quickly that a bishop can move to any square of the same color it currently occupies but cannot more to a square of the opposite color. The goal of the exercise is to give a mathematical proof of this assertion.

Here is the formal setting: Model the chessboard mathematically by the set

$$B = \{1, 2, 3, 4, 5, 6, 7, 8\} \times \{1, 2, 3, 4, 5, 6, 7, 8\}$$

so that the squares correspond to ordered pairs of points (i, j) and the color of a square depends upon whether i + j is even or odd. Define a binary relation \mathcal{R} on B such that $(i, j) \mathcal{R}(p, q)$ if $p = i + \alpha$ and $q = j + \beta$ where $\alpha, \beta \in \{-1, 1\}$ and $(p, q) \in B$ (these correspond to a bishop moving one square in any permissible direction on an empty board), and let \mathcal{E} be the equivalence relation generated by \mathcal{R} .

Here is the formal statement of the exercise: Prove that \mathcal{E} has exactly two equivalence classes, so that the equivalence class of a point is determined by whether i + j is even or odd.

2. Suppose that \mathcal{R}_1 is an equivalence relation on X, let X/\mathcal{R}_1 denote the set of equivalence classes for \mathcal{R}_1 , and let \mathcal{R}_2 be an equivalence relation on X/\mathcal{R}_1 . Define a binary relation S on X such that $x \ S \ y$ if and only if the equivalence classes [x] and [y] of $x, y \in X$ with respect to \mathcal{R}_1 satisfy $[x] \ \mathcal{R}_2 \ [y]$. Prove that S also defines an equivalence relation on X.

3. More on sets and functions

1. A set *J* is called an *initial object* if for each set *X* there is a unique function $f: J \to X$, and a set *T* is called a *terminal object* if for each set *X* there is a unique function $g: X \to T$. Prove that the empty set is the only initial object and the terminal objects are precisely the one point sets of the form $\{p\}$ for some *p*.

2. Given two sets A and B, their disjoint union or abstract sum A II B is given by

$$A \amalg B = A \times \{1\} \cup B \times \{2\} \subset (A \cup B) \times \{1, 2\}$$

so that $A \amalg B$ is a union of two disjoint subsets, one of which is in 1–1 correspondence with A and the other of which is in 1–1 correspondence with B (see the comments below regarding the choice of symbols).

(*i*) If C is a third set, describe a 1–1 correspondence from $(A \amalg B) \times C$ to $(A \times C) \amalg (B \times C)$. [*Hint:* The left hand side is a subset of $(A \cup B) \times \{1, 2\} \times C$, and the right hand side is a subset of $(A \cup B) \times C \times \{1, 2\}$.]

(*ii*) If X is another set and $f: A \to X$, $g: B \to X$ are functions, prove that there is a unique function $h: A \amalg B \to X$ such that h(a, 1) = f(a) for all $a \in A$ and h(b, 2) = g(b) for all $b \in B$.

Remark on the notation. The symbol II is an upside down upper case Greek Pi (= Π). One of the reasons for this choice of symbols is that this construction can be viewed as a "dual" to the Cartesian product, which is denoted by Π , and another is that II is similar but not identical to the usual symbol \cup for the union of two sets.

4. Review of some real analysis

Given a sequence $\{a_n\}$ indexed by the nonnegative integers (or all integers greater than or equal to some fixed N_0 , a subsequence of $\{a_n\}$ is a composite construction $\{a_{n(k)}\}$ where n(k) is an integer valued sequence which is strictly increasing as a function of k. For example, one can construct the subsequence $\{a_{2n}\}$ of even terms in the original sequence or the subsequence $\{a_{n^2}\}$. — This concept is used more than once in Sutherland, but it is not defined formally there.

1. Suppose that $\{a_n\}$ is a sequence of real numbers which converges to some limit value L in the extended real number system (so L may be $\pm \infty$), and let $\{a_{n(k)}\}$ be a subsequence of $\{a_n\}$. Prove that $\{a_{n(k)}\}$ also converges to L.

2. (i) Prove the real number system has the **Cantor nested intersection property**: If we are given a sequence of closed intervals $\{[a_k, b_k]\}$ in the real numbers such that for each n we have $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$, then these is at least one point p which lies in all the intervals.

(ii) Suppose that the endpoints in (i) are all rational numbers. Does it follow that there is a rational number which lies in all the intervals? Prove this or give a counterexample.