ADDITIONAL EXERCISES FOR MATHEMATICS 145A — Part 1

Fall 2014

2. Notations and terminology

0. Given a set X and a binary relation \mathcal{R} on X, define a new binary relation $\mathcal{R}^{\#}$ on X such that $x \mathcal{R}^{\#} y$ if and only if $x=y$ or there is a finite sequence v_{0}, \cdots, v_{m} such that $v_{0}=x, v_{m}=y$ and for each i we have either $v_{i} \mathcal{R} v_{i+1}$ or $v_{i+1} \mathcal{R} v_{i}$. Prove that $\mathcal{R} \#$ is an equivalence relation on X, and if \mathcal{S} is an equivalence relation such that $x \mathcal{S} y$ whenever $x \mathcal{R} y$, then we also have $x \mathcal{S} y$ whenever $x \mathcal{R}^{\#} y$. - The latter implies that $\mathcal{R}^{\#}$ is the minimal equivalence relation on X such that x and y are equivalent whenever $x \mathcal{R} y$, and it is called the equivalence relation generated by R.
1. The game of chess is played on an 8×8 board with squares alternately colored black and white (or some other pair of contrasting colors). A chess player is likely to notice very quickly that a bishop can move to any square of the same color it currently occupies but cannot more to a square of the opposite color. The goal of the exercise is to give a mathematical proof of this assertion.

Here is the formal setting: Model the chessboard mathematically by the set

$$
B=\{1,2,3,4,5,6,7,8\} \times\{1,2,3,4,5,6,7,8\}
$$

so that the squares correspond to ordered pairs of points (i, j) and the color of a square depends upon whether $i+j$ is even or odd. Define a binary relation \mathcal{R} on B such that $(i, j) \mathcal{R}(p, q)$ if $p=i+\alpha$ and $q=j+\beta$ where $\alpha, \beta \in\{-1,1\}$ and $(p, q) \in B$ (these correspond to a bishop moving one square in any permissible direction on an empty board), and let \mathcal{E} be the equivalence relation generated by \mathcal{R}.

Here is the formal statement of the exercise: Prove that \mathcal{E} has exactly two equivalence classes, so that the equivalence class of a point is determined by whether $i+j$ is even or odd.
2. Suppose that \mathcal{R}_{1} is an equivalence relation on X, let X / \mathcal{R}_{1} denote the set of equivalence classes for \mathcal{R}_{1}, and let \mathcal{R}_{2} be an equivalence relation on X / \mathcal{R}_{1}. Define a binary relation \mathcal{S} on X such that $x \mathcal{S} y$ if and only if the equivalence classes $[x]$ and $[y]$ of $x, y \in X$ with respect to \mathcal{R}_{1} satisfy $[x] \mathcal{R}_{2}[y]$. Prove that \mathcal{S} also defines an equivalence relation on X.

3. More on sets and functions

1. A set J is called an initial object if for each set X there is a unique function $f: J \rightarrow X$, and a set T is called a terminal object if for each set X there is a unique function $g: X \rightarrow T$. Prove that the empty set is the only initial object and the terminal objects are precisely the one point sets of the form $\{p\}$ for some p.
2. Given two sets A and B, their disjoint union or abstract sum $A \amalg B$ is given by

$$
A \amalg B=A \times\{1\} \cup B \times\{2\} \subset(A \cup B) \times\{1,2\}
$$

so that $A \amalg B$ is a union of two disjoint subsets, one of which is in 1-1 correspondence with A and the other of which is in 1-1 correspondence with B (see the comments below regarding the choice of symbols).
(i) If C is a third set, describe a 1-1 correspondence from $(A \amalg B) \times C$ to $(A \times C) \amalg(B \times C)$. [Hint: The left hand side is a subset of $(A \cup B) \times\{1,2\} \times C$, and the right hand side is a subset of $(A \cup B) \times C \times\{1,2\}$.]
(ii) If X is another set and $f: A \rightarrow X, g: B \rightarrow X$ are functions, prove that there is a unique function $h: A \amalg B \rightarrow X$ such that $h(a, 1)=f(a)$ for all $a \in A$ and $h(b, 2)=g(b)$ for all $b \in B$.

Remark on the notation. The symbol \amalg is an upside down upper case $\mathrm{Greek} \mathrm{Pi}(=\Pi)$. One of the reasons for this choice of symbols is that this construction can be viewed as a "dual" to the Cartesian product, which is denoted by Π, and another is that \amalg is similar but not identical to the usual symbol \cup for the union of two sets.

4. Review of some real analysis

Given a sequence $\left\{a_{n}\right\}$ indexed by the nonnegative integers (or all integers greater than or equal to some fixed N_{0}, a subsequence of $\left\{a_{n}\right\}$ is a composite construction $\left\{a_{n(k)}\right\}$ where $n(k)$ is an integer valued sequence which is strictly increasing as a function of k. For example, one can construct the subsequence $\left\{a_{2 n}\right\}$ of even terms in the original sequence or the subseqnece $\left\{a_{n^{2}}\right\}$. - This concept is used more than once in Sutherland, but it is not defined formally there.

1. Suppose that $\left\{a_{n}\right\}$ is a sequence of real numbers which converges to some limit value L in the extended real number system (so L may be $\pm \infty$), and let $\left\{a_{n(k)}\right\}$ be a subsequence of $\left\{a_{n}\right\}$. Prove that $\left\{a_{n(k)}\right\}$ also converges to L.
2. (i) Prove the real number system has the Cantor nested intersection property: If we are given a sequence of closed intervals $\left\{\left[a_{k}, b_{k}\right]\right\}$ in the real numbers such that for each n we have $\left[a_{n+1}, b_{n+1}\right] \subset\left[a_{n}, b_{n}\right]$, then these is at least one point p which lies in all the intervals.
(ii) Suppose that the endpoints in (i) are all rational numbers. Does it follow that there is a rational number which lies in all the intervals? Prove this or give a counterexample.
