
ADDITIONAL EXERCISES FOR

MATHEMATICS 145A — Part 1

Fall 2014

2. Notations and terminology

0. Given a set X and a binary relation R on X, define a new binary relation R# on X such
that x R# y if and only if x = y or there is a finite sequence v0, · · · , vm such that v0 = x, vm = y
and for each i we have either vi R vi+1 or vi+1 R vi. Prove that R# is an equivalence relation on
X, and if S is an equivalence relation such that x S y whenever x R y, then we also have x S y
whenever x R# y. — The latter implies that R# is the minimal equivalence relation on X such
that x and y are equivalent whenever x R y, and it is called the equivalence relation generated by

R.

1. The game of chess is played on an 8 × 8 board with squares alternately colored black
and white (or some other pair of contrasting colors). A chess player is likely to notice very quickly
that a bishop can move to any square of the same color it currently occupies but cannot more to
a square of the opposite color. The goal of the exercise is to give a mathematical proof of this
assertion.

Here is the formal setting: Model the chessboard mathematically by the set

B = {1, 2, 3, 4, 5, 6, 7, 8} × {1, 2, 3, 4, 5, 6, 7, 8}

so that the squares correspond to ordered pairs of points (i, j) and the color of a square depends
upon whether i + j is even or odd. Define a binary relation R on B such that (i, j) R (p, q) if
p = i + α and q = j + β where α, β ∈ {−1, 1} and (p, q) ∈ B (these correspond to a bishop moving
one square in any permissible direction on an empty board), and let E be the equivalence relation
generated by R.

Here is the formal statement of the exercise: Prove that E has exactly two equivalence classes,
so that the equivalence class of a point is determined by whether i + j is even or odd.

2. Suppose that R1 is an equivalence relation on X, let X/R1 denote the set of equivalence
classes for R1, and let R2 be an equivalence relation on X/R1. Define a binary relation S on X
such that x S y if and only if the equivalence classes [x] and [y] of x, y ∈ X with respect to R1

satisfy [x] R2 [y]. Prove that S also defines an equivalence relation on X.

3. More on sets and functions

1. A set J is called an initial object if for each set X there is a unique function f : J → X,
and a set T is called a terminal object if for each set X there is a unique function g : X → T .
Prove that the empty set is the only initial object and the terminal objects are precisely the one
point sets of the form {p} for some p.

2. Given two sets A and B, their disjoint union or abstract sum A q B is given by

A q B = A × {1} ∪ B × {2} ⊂ (A ∪ B) × {1, 2}
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so that AqB is a union of two disjoint subsets, one of which is in 1–1 correspondence with A and
the other of which is in 1–1 correspondence with B (see the comments below regarding the choice
of symbols).

(i) If C is a third set, describe a 1–1 correspondence from (A q B)×C to (A×C)q (B ×C).
[Hint: The left hand side is a subset of (A ∪ B) × {1, 2} × C, and the right hand side is a subset
of (A ∪ B) × C × {1, 2}.]

(ii) If X is another set and f : A → X, g : B → X are functions, prove that there is a unique
function h : A q B → X such that h(a, 1) = f(a) for all a ∈ A and h(b, 2) = g(b) for all b ∈ B.

Remark on the notation. The symbol q is an upside down upper case Greek Pi (=Π). One
of the reasons for this choice of symbols is that this construction can be viewed as a “dual” to the
Cartesian product, which is denoted by Π, and another is that q is similar but not identical to the
usual symbol ∪ for the union of two sets.

4. Review of some real analysis

Given a sequence {an} indexed by the nonnegative integers (or all integers greater than or
equal to some fixed N0, a subsequence of {an} is a composite construction {an(k)} where n(k) is
an integer valued sequence which is strictly increasing as a function of k. For example, one can
construct the subsequence {a2n} of even terms in the original sequence or the subseqnece {an2}.
— This concept is used more than once in Sutherland, but it is not defined formally there.

1. Suppose that {an} is a sequence of real numbers which converges to some limit value L
in the extended real number system (so L may be ±∞), and let {an(k)} be a subsequence of {an}.
Prove that {an(k)} also converges to L.

2. (i) Prove the real number system has the Cantor nested intersection property: If
we are given a sequence of closed intervals {[ak, bk]} in the real numbers such that for each n we
have [an+1, bn+1] ⊂ [an, bn], then these is at least one point p which lies in all the intervals.

(ii) Suppose that the endpoints in (i) are all rational numbers. Does it follow that there is a
rational number which lies in all the intervals? Prove this or give a counterexample.
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