ADDITIONAL EXERCISES FOR

MATHEMATICS 145A — Part 3

Winter 2014

7. Topological spaces

1. Let \mathcal{U} denote the topology in Exercise 7.6 of Sutherland, which consists of \mathbb{R} , the empty set and all intervals $(-\infty, b)$ where b is some real number. If (X, \mathcal{T}) is a topological space, a continuous function $f: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{U})$ is said to be upper semi-continuous.

(i) Let (X, \mathcal{T}) be a topological space, and let f be a real valued function on X. Prove that f is upper semi-continuous if and only if for each $x \in X$ and $\varepsilon > 0$ there is some open set $U_{\varepsilon,x}$ containing x such that $y \in U_{\varepsilon,x}$ implies $f(y) < f(x) + \varepsilon$.

(*ii*) Let [a, b] be a closed interval in \mathbb{R} , let $f : \mathbb{R} \to \mathbb{R}$ be the function whose value is 1 on [a, b] and zero elsewhere, and let d be the usual metric on \mathbb{R} . Prove that $f : (\mathbb{R}, d) \to (\mathbb{R}, \mathcal{U})$ is upper semi-continuous.

(*iii*) Let $f : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function (but not necessarily strictly increasing), and let d be the usual metric on \mathbb{R} . Prove that if f satisfies the one-sided continuity condition $f(x) = \text{G.L.B.}_{t>x} f(t)$ for all x, then $f : (\mathbb{R}, d) \to (\mathbb{R}, \mathcal{U})$ is upper semi-continuous.

(*iv*) Let $a, b \in \mathbb{R}$ with $a \ge 0$, and let f(x) = ax + b, where $x \in \mathbb{R}$. Prove that $f : (\mathbb{R}, \mathcal{U}) \to (\mathbb{R}, \mathcal{U})$ is continuous.

(v) Let $a, b \in \mathbb{R}$ with $a \ge 0$, and let f(x) = -x, where $x \in \mathbb{R}$. Prove that $f : (\mathbb{R}, \mathcal{U}) \to (\mathbb{R}, \mathcal{U})$ is not continuous.

2. In the topological space $(\mathbb{R}, \mathcal{U})$ from the preceding exercise, prove the following:

(i) Given $x \neq y$, there is an open set V containing one of these points but not the other.

(*ii*) If x < y, then every open set which contains y also contains x. Deduce from this that for each $x \in \mathbb{R}$ the subset $\mathbb{R} - \{x\}$ is not open with respect to \mathcal{U} .

8. Continuity in topological spaces; bases

1. If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, a function $f : X \to Y$ is said to be an open mapping if for each open subset $U \subset X$, the image f[U] is open in Y, one can define a closed mapping similarly, replacing "open" with "closed" everywhere. — Prove that the composite of two open mappings is open, and the composite of two closed mappings is closed.

2. Let X be a set, let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X, and let $j_X : (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ be the identity map. Prove that j_X is continuous if and only if \mathcal{T}_2 is contained in \mathcal{T}_1 , and j_X is open if and only if \mathcal{T}_1 is contained in \mathcal{T}_2 .

3. Show that the function below defines a homeomorphism of \mathbb{R}^2 by describing the inverse explicitly:

$$F(x,y) = \left(xe^y + y , xe^y - y\right)$$

4. Show that the function below defines a homeomorphism of \mathbb{R}^3 by describing the inverse explicitly:

$$F(x,y,z) = \left(\frac{x}{2+y^2} + ye^z, \frac{x}{2+y^2} - ye^z, 2ye^z + z\right)$$

5. (i) Show that the function $f(x) = e^x + x$ is strictly increasing and satisfies

$$\lim_{x \to -\infty} f(x) = -\infty, \qquad \lim_{x \to +\infty} f(x) = +\infty$$

and using the Intermediate Value Theorem explain why g has a continuous inverse. [*Hint:* Use a derivitative test to show g is increasing.]

(*ii*) Show that the function below defines a homeomorphism of \mathbb{R}^2 :

$$F(x,y) = (e^x + y, x - y)$$

[*Hint:* The formula for the inverse to F will use the inverse to the function g considered in part (i).]

Note. A general version of the Intermediate Value Theorem is stated and proved in Chapter 12 of Sutherland; for the purposes of working part (i) of Exercise 5, the validity of the theorem can be assumed.