ADDITIONAL EXERCISES FOR MATHEMATICS 145A - Part 3

Winter 2014

7. Topological spaces

1. Let \mathcal{U} denote the topology in Exercise 7.6 of Sutherland, which consists of \mathbb{R}, the empty set and all intervals $(-\infty, b)$ where b is some real number. If (X, \mathcal{T}) is a topological space, a continuous function $f:(X, \mathcal{T}) \rightarrow(\mathbb{R}, \mathcal{U})$ is said to be upper semi-continuous.
(i) Let (X, \mathcal{T}) be a topological space, and let f be a real valued function on X. Prove that f is upper semi-continuous if and only if for each $x \in X$ and $\varepsilon>0$ there is some open set $U_{\varepsilon, x}$ containing x such that $y \in U_{\varepsilon, x}$ implies $f(y)<f(x)+\varepsilon$.
(ii) Let $[a, b]$ be a closed interval in \mathbb{R}, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function whose value is 1 on $[a, b]$ and zero elsewhere, and let d be the usual metric on \mathbb{R}. Prove that $f:(\mathbb{R}, d) \rightarrow(\mathbb{R}, \mathcal{U})$ is upper semi-continuous.
(iii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function (but not necessarily strictly increasing), and let d be the usual metric on \mathbb{R}. Prove that if f satisfies the one-sided continuity condition $f(x)=$ G.L.B. ${ }_{t>x} f(t)$ for all x, then $f:(\mathbb{R}, d) \rightarrow(\mathbb{R}, \mathcal{U})$ is upper semi-continuous.
(iv) Let $a, b \in \mathbb{R}$ with $a \geq 0$, and let $f(x)=a x+b$, where $x \in \mathbb{R}$. Prove that $f:(\mathbb{R}, \mathcal{U}) \rightarrow(\mathbb{R}, \mathcal{U})$ is continuous.
(v) Let $a, b \in \mathbb{R}$ with $a \geq 0$, and let $f(x)=-x$, where $x \in \mathbb{R}$. Prove that $f:(\mathbb{R}, \mathcal{U}) \rightarrow(\mathbb{R}, \mathcal{U})$ is not continuous.
2. In the topological space $(\mathbb{R}, \mathcal{U})$ from the preceding exercise, prove the following:
(i) Given $x \neq y$, there is an open set V containing one of these points but not the other.
(ii) If $x<y$, then every open set which contains y also contains x. Deduce from this that for each $x \in \mathbb{R}$ the subset $\mathbb{R}-\{x\}$ is not open with respect to \mathcal{U}.

8. Continuity in topological spaces; bases

1. If $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are topological spaces, a function $f: X \rightarrow Y$ is said to be an open mapping if for each open subset $U \subset X$, the image $f[U]$ is open in Y, one can define a closed mapping similarly, replacing "open" with "closed" everywhere. - Prove that the composite of two open mappings is open, and the composite of two closed mappings is closed.
2. Let X be a set, let \mathcal{T}_{1} and \mathcal{T}_{2} be two topologies on X, and let $j_{X}:\left(X, \mathcal{T}_{1}\right) \rightarrow\left(X, \mathcal{T}_{2}\right)$ be the identity map. Prove that j_{X} is continuous if and only if \mathcal{T}_{2} is contained in \mathcal{T}_{1}, and j_{X} is open if and only if \mathcal{T}_{1} is contained in \mathcal{T}_{2}.
3. Show that the function below defines a homeomorphism of \mathbb{R}^{2} by describing the inverse explicitly:

$$
F(x, y)=\left(x e^{y}+y, x e^{y}-y\right)
$$

4. Show that the function below defines a homeomorphism of \mathbb{R}^{3} by describing the inverse explicitly:

$$
F(x, y, z)=\left(\frac{x}{2+y^{2}}+y e^{z}, \frac{x}{2+y^{2}}-y e^{z}, 2 y e^{z}+z\right)
$$

5. (i) Show that the function $f(x)=e^{x}+x$ is strictly increasing and satisfies

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty, \quad \lim _{x \rightarrow+\infty} f(x)=+\infty
$$

and using the Intermediate Value Theorem explain why g has a continuous inverse. [Hint: Use a deriviative test to show g is increasing.]
(ii) Show that the function below defines a homeomorphism of \mathbb{R}^{2} :

$$
F(x, y)=\left(e^{x}+y, x-y\right)
$$

[Hint: The formula for the inverse to F will use the inverse to the function g considered in part (i).]

Note. A general version of the Intermediate Value Theorem is stated and proved in Chapter 12 of Sutherland; for the purposes of working part (i) of Exercise 5, the validity of the theorem can be assumed.

