ADDITIONAL EXERCISES FOR MATHEMATICS 145A — Part 4

Winter 2014

9. Some concepts in topological spaces

1. Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are topological spaces and that \mathcal{V} is a family of subsets which generates \mathcal{T}_{Y}. Prove that a function $f: X \rightarrow Y$ is continuous if and only if for each $V \in \mathcal{V}$ the inverse image $f^{-1}[V]$ is open in X.
2. Let $D^{2} \subset \mathbb{R}^{2}$ be the set of all v such that $|v| \leq 1$, and let $N_{1}(0) \subset \mathbb{R}^{2}$ be the subset defined by $|v|<1$. Prove that the boundary of each of these subsets is the unit circle S^{1} defined by the equation $|v|=1$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is continuous with respect to the usual topology on \mathbb{R}, and define the graph of f to be the subset Γ_{f} consisting of all $(x, y) \in \mathbb{R}^{2}$ such that $y=f(x)$. Prove that Γ_{f} is the boundary for each of the following subsets:

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid y<f(x)\right\}, \quad\left\{(x, y) \in \mathbb{R}^{2} \mid y>f(x)\right\}
$$

[Hint: Look back at a previous additional exercise for Chapter 6.]

10. Subspaces and product spaces

1. Suppose that X is a topological space and $A \subset B \subset X$. If A is dense in B (with respect to the subspace topology on B) and B is dense in X, prove that A is dense in X.
2. Given topological spaces X and Y, suppose that $X \times Y$ has the product topology, and let π_{X} and π_{Y} denote the coordinae projections onto X and Y respectively. Prove that these two mappings (which are continuous and open) are not necessarily closed. [Hint: Look at the graph of $f(x)=1 / x$ for $x \neq 0$.]
3. Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are topological spaces, and assume that A and B are subsets of X and Y respectively. If $\mathcal{T}_{X} \prod \mathcal{T}_{Y}$ denotes the product topology and $\mathcal{T}_{X}\left|A, \mathcal{T}_{Y}\right| B$ denote the respective subspace topologies, prove that

$$
\left(\mathcal{T}_{X} \prod \mathcal{T}_{Y}\right)\left|A \times B=\left(\mathcal{T}_{X} \mid A\right) \prod\left(\mathcal{T}_{Y}\right)\right| B
$$

In words, a topological product of subspaces is a subspace of the topological product. [Hint: Show that both topologies are generated by the same subsets of $A \times B$.]
4. (i) Suppose that $\left(X, \mathcal{T}_{X}\right)$ is a topological space and $f: X \rightarrow Y$ is a function with values in some set Y. Prove that there is a unique maximal topology $f_{*} \mathcal{T}_{X}$ on Y such that f is continuous. [Hint: If f is continuous, what is the largest family of subsets in Y whose inverse images could be open?]
(ii) Suppose that $\left(Y, \mathcal{T}_{Y}\right)$ is a topological space and $f: X \rightarrow Y$ is a function defined on some set X. Prove that there is a unique minimal topology $f^{*} \mathcal{T}_{Y}$ on X such that f is continuous. [Hint: If f is continuous, what is the smallest family of subsets in X whose inverse images must be open?]
Note. The topologies in the preceding exercise are sometimes called the co-induced topology and the induced topology respectively.

