ADDITIONAL EXERCISES FOR MATHEMATICS 145A - Part 5

Winter 2014

11. The Hausdorff condition

1. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the graph Γ_{f} is closed in \mathbb{R}^{2} but f is not continuous. [Hint: Set $f(x)=1 / x$ if $x \neq 0$.]

Note. Later in this course we shall show that if the topologies for X and Y are suitably restricted, then a function $f: X \rightarrow Y$ is continuous if (and only if) its graph is a closed subset of $X \times Y$. There are also results of this type in other branches of mathematics (for example, in functional analysis).
2. Given a topological space (X, \mathcal{T}), let \mathcal{B} be a base for its topology. Prove that X is Hausdorff if and only if for each pair of distinct points $u \neq v$ in X there exist basic open sets $U, V \in \mathcal{B}$ such that $u \in U, v \in V$, and $U \cap V=\emptyset$.
3. Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are topological spaces and that A and B are closed subsets of X and Y respectively. Prove that $A \times B$ is a closed subset of $X \times Y$ with the product topology. [Hint: Explain why $A \times B$ is the intersection of $\pi_{X}^{-1}[A]$ and $\pi_{Y}^{-1}[B]$ and use the characterization of continuity involving inverse images of closed subsets.]

12. Connected spaces

Some of these problems will use material about cardinal numbers from Mathematics 144. There is a brief summary of the necessary background material in the directory file cardinals.pdf.

1. Let (X, d) be a metric space which contains more than one point. prove that the cardinality of X is at least as large as the cardinality of \mathbb{R}. [Hint: If $x, y \in X$, show that for each a such that $0 \leq a \leq d(x, y)$ there is some point $z \in X$ such that $d(x, z)=a$.]
2. (i) Let $U \subset \mathbb{R}^{2}$ be the open square $(0,1)^{2}$, let S be a subset of \mathbb{R}, and let $A_{S}=U \cup S \times\{1\}$. Using Proposition 12.19 of Sutherland, show that A_{S} is connected.
(ii) In the setting of part (i), show that $S \neq T$ implies $A_{S} \neq A_{T}$, and using this prove that the cardinality of the number of connected subsets in \mathbb{R}^{2} is equal to $|\mathcal{P}(\mathbb{R})|$, where $\mathcal{P}(X)$ denotes the set of all subsets of a set X.
3. Prove that the cardinality of the set of connected subsets of \mathbb{R} is equal to $|\mathbb{R}|$, and explain why this implies that \mathbb{R} and \mathbb{R}^{2} are not homeomorphic. [Hint: Explain why every connected subset of \mathbb{R} is an open, closed or half open interval, and explain why the number of such intervals is equal to \mathbb{R}.]
4. (i) A topological space is said to be totally disconnected if it has a base consisting of subsets which are both open and closed. Explain why a discrete space is totally disconnected, and show that the set of all points x in \mathbb{R} such that $x=0$ or $x=1 / n$ for some positive integer n is a totally disconnected space which is not (homeomorphic to) a discrete space. [Hint: A subset of a discrete space has no limit points.]
(ii) Prove that the rational numbers (with the subspace topology inherited from \mathbb{R}) is a totally disconnected space in which every point is a limit point. [Hint: If q is a rational number, explain why for each positive integer n the sets

$$
\left(q-\frac{1}{n} \sqrt{2}, \quad q+\frac{1}{n} \sqrt{2}\right) \cap \mathbb{Q} \quad \text { and } \quad\left[q-\frac{1}{n} \sqrt{2}, q+\frac{1}{n} \sqrt{2}\right] \cap \mathbb{Q}
$$

are equal, and hence these subsets are open and closed in \mathbb{Q}.]
(iii) Prove that a product of two totally disconnected topological spaces is also totally disconnnected.
5. Let U be a connected open subset of \mathbb{R}^{n} for some positive integer n.
(i) Given a parametrized curve (continuous function) $\gamma:[a, b] \rightarrow U$, for some closed interval $[a, b]$, write its coordinates in the form $x_{j}(t)$. The curve γ is said to be a regular piecewise smooth curve if there is a finite sequence of points in $[a, b]$ of the form

$$
a=t_{0}<t_{1}<\cdots<t_{m}=b
$$

such that the restriction of γ to each subinterval $\left[t_{k-1}, t_{k}\right]$ has continuously differentiable coordinates such that the tangent vector

$$
\gamma^{\prime}(t)=\left(x_{1}^{\prime}(t), \cdots, x_{n}^{\prime}(t)\right)
$$

(computed over the subinterval $\left[t_{k-1}, t_{k}\right]$) is always nonzero; there is no requirement that the left and right hand tangent vectors $\gamma^{\prime}\left(t_{k}-\right)$ and $\gamma^{\prime}\left(t_{k}+\right)$ should be the same (for example, such a parametrization exists for the boundary curve of the solid square in \mathbb{R}^{2} defined by $0 \leq u, v \leq 1$).

Prove that if p and q are points of the open set U satisfying the conditions at the beginning of this exercise, then there is a regular piecewise smooth curve $\gamma:[a, b] \rightarrow U$ such that $\gamma(a)=p$ and $\gamma(b)=q$. [Hint: Define a binary relation on U such that $y \sim z$ if and only if y and z can be joined by such a curve. Show that this is an equivalence relation and that if $z \in U$ and $N_{r}\left(z ; \mathbb{R}^{n}\right) \subset U$, then $N_{r}\left(z ; \mathbb{R}^{n}\right)$ is contained in the equivalence class of z. From this point on, imitate the proof that an open connected subset of \mathbb{R}^{n} is arcwise connected.]
(ii) Let $f: U \rightarrow \mathbb{R}$ be a continuous function such that the partial derivatives

$$
\frac{\partial f}{\partial x_{i}} \quad(1 \leq i \leq n)
$$

are defined and equal to zero everywhere on U. Prove that f is a constant function. [Hint: In this case define an equivalence relation on U by $y \sim z$ if and only if $f(y)=f(z)$. Standard results on partial differentiation show that if $z \in U$ and $N_{r}\left(z ; \mathbb{R}^{n}\right) \subset U$, then $N_{r}\left(z ; \mathbb{R}^{n}\right)$ is contained in the equivalence class of z. From this point on, imitate the proof that an open connected subset of \mathbb{R}^{n} is arcwise connected.]

