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Winter 2014

7. Topological spaces

Even-numbered exercises from Sutherland

7.2. The simplest example involves the Sierpiński space topology: Let X = {0.1}, let T0

consist of {∅, {0}, X}, and let T1 consist of {∅, {1}, X}. By Example 7.7 these are topologies on X,
and neither one is contained in the other. — One can also give many examples of metrics on the
same set such that their associated topologies have this property, but at this point we do not have
the machinery needed to prove anything.

7.4. Let Un be the set {1, · · · , n}. Then Up ∩ Uq = Ur where r is the smaller of p and q.
Suppose now that Uα belongs to the family, and consider the union

⋃

α

Uα .

If some Uα = N, then the union is equal to N and hence the union is open. Suppose now that
each Uα is finite, and let n(α) denote its maximal element. If there are only finitely many values
n(α), then the union is Um where m is the maximal value n(α). On the other hand, if there is no
maximal value, then the union is equal to N. In each of this case a union of sets in the family also
belongs to the family, and therefore the family forms a topology on N.

7.6. The intersection of two sets (−∞, b1) and (−∞, b2) is equal to (−∞, b∗), where b∗ is
the smaller of b1 and b2. As in the preceding exercise, it suffices to show that a nonempty union of
proper subsets from the family is also a member of that family. Suppose then that we have proper
subsets (−∞, bα) from this family. Then the union

⋂

α

(−∞, bα)

is equal to (−∞, c) where c = +∞ if the set B = {bα} has no upper bound, and c is the least upper
bound of B if the latter has an upper bound. In each case the union of sets from the family still
belongs to this family, so the family does form a topology on R.

IMPORTANT NOTE. Henceforth, the solutions to ALL exercises in Sutherland with be
in files that have been distributed by the book author and will simply be appended to the course
directory files.

Additional exercise(s)

1. (i) Suppose that f is upper semi-continuous, let x ∈ X, and let ε > 0. Then the inverse
image of (−∞, f(x) + ε) is open, and hence it contains some open subset U such that x ∈ U .
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Conversely, suppose that the condition in the exercise holds, let (−∞, b) ∈ U, and let x be a
point in the inverse image D of (−∞, b). If ε = b − f(x), then ε > 0 and hence there is some open
set Vx in X such that x ∈ Vx and f maps Vx into (−∞, b). Therefore the inverse image is equal to

⋃

f(x)∈D

{x} =
⋃

f(x)∈D

Vx ⊂ D

so that D is a union of open subsets and hence is open in D.

(ii) If b ≥ 1 the inverse image of (−∞, b) is all of R and hence is open. If 1 > b ≥ 0 the inverse
image of (−∞, b) is of R − [a, b] and hence is open. If 0 > b ≥ 0 the inverse image of (−∞, b) is
of empty and hence is open. — These combine to show that the inverse of every U-open subset is
open.

(iii) Let x ∈ R and let ε > 0. If f(t) < f(x) + ε for all t ∈ R, then for every δ > 0 we know
that |t − x| < δ implies f(t) < f(x) + ε. If If f(t0) ≥ f(x) + ε for some t0, let b be the greatest
lower bound of all t such that f(t) ≥ f(x) + ε. Then the one-sided continuity condition implies
that f(b) ≥ f(x) + ε. Since f is increasing we must have x < b. Therefore, if |t − x| < b − x then
f(t) < f(x) + ε.

(iv) Let d ∈ R. Straightforward computation implies that d > f(x) = ax + b if and only if

x <
d − b

a

and hence inverse images of U-open subsets are U-open.

(v) The inverse image of (−∞, 0) is (0,+∞), which is not U-open, and therefore f is not
continuous with respect to the U topology on R for both the domain and co-domain.

2. (i) If a < b then (−∞, a) is such a subset.

(ii) Every nonempty subset has the form R or (−∞, c) for some c, and such sets clearly have
the property described in this part of the exercise. — To see that R− {x} is not open, notice that
x + 1 lies in the latter but x does not, so the condition in (i) is not satisfied and hence the set
R − {x} cannot be U-open.

8. Continuity in topological spaces; bases

Exercises from Sutherland

See the next two pages.
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Solutions to Chapter 8 exercises

8.1 (a) In this case the inverse image of any open set is itself, hence it is open, and f is continuous.

(b) Let the constant value be y0 ∈ Y . Then f−1(U) = X if y0 ∈ U and f−1(U) = ∅ if y0 �∈ U .

In either case f−1(U) is open, and f is continuous.

(c) In this case f−1(U) is open in X no matter which set U ⊆ Y is chosen, so f is continuous.

(d) In this case the only open sets in Y are Y, ∅ . Now f−1(∅) = ∅ and f−1(Y ) = X . So f is

continuous since both ∅ and X are open in X .

8.2 First suppose that f : X → Y is continuous, and let x0 ∈ X . Let U be any open set in Y

containing f(x0). Then f−1(U) is an open set in X containing x0 and f(f−1(U)) ⊆ U , so f is

continuous at x0 . This holds for any x0 ∈ X , so f is continuous at every point of X .

Now suppose that f is continuous at every point of X , and let U ⊆ Y be open in Y . We

want to show that f−1(U) is open in X . Let x ∈ f−1(U). Then f(x) ∈ U , and since f is

continuous at x there exists an open set, call it Vx , open in X with x ∈ Vx and f(Vx) ⊆ U , so

Vx ⊆ f−1(U). Then

f−1(U) =
⋃

x∈f−1(U)

Vx,

since each x0 ∈ f−1(U) is in Vx0 ⊆
⋃

x∈f−1(U)

Vx , and conversely any point in
⋃

x∈f−1(U)

Vx is in Vx0

for some x0 ∈ f−1(U), and Vx0 ⊆ f−1(U). Hence
⋃

x∈f−1(U)

Vx ⊆ f−1(U). Now f−1(U) is a union

of open sets, hence is open and f is continuous.

8.3 Suppose first that A is open in X . The only open sets in S are ∅, S and {1} . Now

χ−1
A (∅) = ∅, χ−1

A (S) = X and χ−1
A (1) = A, all of which are open in X so χA is continuous.

Conversely suppose that χA is continuous. Then A is open in X since A = χ−1
A (1) and {1} is

open in S.

8.4 Equivalence of topological spaces is reflexive, since for any space X the identity function of

X is a homeomorphism. It is symmetric since if f : X → Y is a homeomorphism of topological

spaces then so is f−1 : Y → X . It is transitive since if f : X → Y and g : Y → Z are

homeomorphisms then so is g ◦ f : X → Z : for g ◦ f is bijective since f and g are, and

continuous by Proposition 8.4; so is its inverse f−1 ◦ g−1 by definition and Proposition 8.4.

Hence equivalence of topological spaces is an equivalence relation.

8.5 We need to show that any open set U ⊆ R is a union of finite open intervals. Now by

definition of the usual topology, for any x ∈ U there is some εx > 0 such that (x−εx, x+εx) ⊆ U .

It is straightforward to check that

U =
⋃

x∈U

(x − εx, x + εx).



8.6 Suppose that the given condition holds. Then the inverse image under f of any finite open

interval (a, b) is open, since f−1(a, b) = f−1((−∞, b)∩ (a, ∞)) = (f−1(−∞, b))∩ (f−1(a, ∞)),

which is the intersection of two sets open in X , and hence is open in X . Continuity of f now

follows from Exercise 8.5 and Proposition 8.12.

8.7 We have to show that B is a basis, and that it is countable. We first show B is a basis. For

this we need to show that any open subset U of R2 is the union of a subfamily of B .

So let U be an open subset of R2 and let (x, y) ∈ U . It is enough to show that there is

a set B ∈ B such that (x, y) ∈ B ⊆ U . First, there exists ε > 0 such that B3ε((x, y)) ⊆ U .

Now choose some rational number q such that ε < q < 2ε . Let q1, q2 be rational numbers with

|x − q1| < ε/
√

2 and |y − q2| < ε/
√

2. Let us write d for the Euclidean distance in R2 . Then

d((q1, q2), (x, y)) =
√

(x − q1)2 + (y − q2)2 < ε.

Now (x, y) ∈ Bε((q1, q2)) ⊆ Bq((q1, q2)) ∈ B. Also, Bq((q1, q2)) ⊆ B3ε((x, y)) ⊆ U : for if

(x′, y′) ∈ Bq(q1, q2) then

d((x′, y′), (x, y)) � d((x′, y′), (q1, q2)) + d((q1, q2), (x, y)) < q + ε < 3ε.

This shows that U is a union of sets in B .

To show that B is countable, note that there is an injective function from B to Q3 defined

by Bq((q1, q2)) 
→ (q, q1, q2). Now B is countable by standard facts about countable sets: Q is

countable, a finite product of countable sets is countable, and any set from which there is an

injective function to a countable set is countable.



Additional exercise(s)

1. Suppose that f : X → Y and g : Y → Z are {open/closed} mappings, and suppose
that A is {open/closed} in X. Since f is a/an {open/closed} mapping, it follows that f [A] is
{open/closed} in Y , and since g is a/an {open/closed} mapping, it follows that g of [A] = g

[

f [A]
]

is {open/closed} in Z.

2. The map jX is continuous if and only if every T2-open set is also T1-open, which is true
if and only if T2 is contained in T1. Similarly, the map jX is open if and only if every T1-open set
is also T2-open, which is true if and only if T1 is contained in T2.

Note. If Fi is the family of closed sets associated to Ti we also have the following analog: The
identity map jX is continuous if and only if F2 is contained in F1, and jX is closed if and only if
F1 is contained in F2.

3. To show that F is 1–1 onto we need to show that for each choice of u and v there is a
unique solution to the system of equations

u = xey + y, v = xey − y .

Here is an elementary way of doing so. Subtacting the second equation from the first shows that
y = (u − v)/2, and adding the two equations together yields

2x ey = u + v .

Since we can solve uniquely for y, this equation shows that we can also solve uniquely for x, and
these solutions are continuous functions of u and v. Therefore F is 1–1 onto, and we have derived
an explicit description for the inverse mapping which shows that this inverse is continuous.

4. Use the same approach as in the previous problem, finding unique solutions to the system
of equations

(u, v, w) =

(

x

2 + y2
+ yez,

x

2 + y2
− yez, 2yez + z

)

amounts to showing that for each choice of u, v and w there is a unique solution (x, y, z) for the
displayed vector equation (which is a system of three scalar equations), and here is a summary of
how this can be done: Subtracting the second equation from the first yields 2 y ez = u − v, and by
the third equation the left hand side is equal to w − z. Therefore we can solve for z uniquely in
terms of u, v and w. If we substitute this result into 2 y ez = u − v we also get a unique solution
for y in terms of u, v and w. Finally, if we add the original first and second equations we obtain
u+ v = 2x/(2+ y2). Since we already know that we can solve uniquely for y, this equation implies
that we also get a unique solution for x terms of u, v and w. For each coordinate x, y, z the formulas
for these coordinates in terms of u, v, w are continuous functions of the latter, and this implies that
the inverse is continuous.

5. (i) The function f(x) = ex + x is differentiable and it is strictly increasing because
f ′(x) = ex + 1 is always positive. Since the limits of ex and x as x → +∞ are equal to +∞, the
same is true for the limit of f(x) as x → ∞. Furthermore, since the limits of ex and x as x → −∞
are equal to 0 and −∞ respectively, the limit of f(x) as x → −∞ is equal to −∞, and therefore
by the Intermediate Value Property the continuous mapping f is 1–1 onto from R to itself. If h is
the inverse function to f , the standard rule for differentiation of inverses implies that if y = f(x),
then h′(y) = 1/f ′(x), so h is differentiable and hence continuous.
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(ii) Once again, the idea is to solve (u, v) = (xey + y, xey − y) for x and y, and to show that
the formulas for x and y are continuous functions of u and v. We have u − v = 2y and hence
y = 1

2
(u− v). Furthermore, we also have u + v = ex + x, so if h is the inverse function from (i), we

have x = h(u + v). As before, this shows that F is 1–1 onto and has a continuous inverse.

Note. The inverse function to f(x) = ex + x cannot be expressed in terms of the standard
functions from first year calculus. Further information on this inverse — and several closely related
inverse functions — is summarized in the course directory file lambert-fcn.pdf; the latter also
gives a reference for the key step in proving that there is no nice formula (in the sense of first year
calculus) for the inverse function to f .

The preceding discussion reflects an unpleasant fact about inverse functions: Even if a function

with an inverse is defined by a nice formula, there is no guarantee that the inverse can be defined

by a formula which is also reasonably nice. — This is even true for polynomial functions. One
example of this type is mentioned in Section II.3 of the course directory file transcendentals.pdf;
however, the discsussion of the example involves material (Galois theory) which is not covered in
this course or its prerequisites.
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