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Solutions to Chapter 9 exercises

9.1 The complement of any subset V' of a discrete space X is open in X, so V is closed in X.

9.2 In order to be open in X, a subset either has to be empty or to have finite complement in
X . So the subsets of X which are closed in X are X itself and any finite subset of X.

9.3 We may choose for example U = (0, 1) U (2, 4), V = (1, 3). Then

UNV =23, UnV=[23), UnV={1}U[2,3], UNV =0.

9.4(a) Using Exercise 9.2, we see that any finite subset A of X is closed in X and hence is its

own closure.

(b) Again using Exercise 9.2 we see that when A is infinite, the smallest closed set containing
A'is X. Hence A= X (by Proposition 9.10 (f)).

9.5 (a) This is false in general. For a counterexample, let X be the space {0, 1} with the
discrete topology, let Y be the space {0, 1} with the indiscrete topology, and let f be the
identity function. Then f is continuous for example by Exercise 8.1, (¢) or (d). Also, A = {0}
is closed in X but f(A) = A is not closed in Y. (The same counterexample would work for any

set with at least two points in it.)

(b) Again this is false: we have seen a counterexample in Exercise 9.3 - take A = (0, 1) U (2, 4)
and B = (1, 3) in R, and we have AN B = (2, 3] while AN B = 0.
(c) This is false too. Let f be as in the counterexample for (a) and let B = {0}. Then B = {0, 1}

so f~1(B) ={0, 1} but f~1(B) = {0} so f~1(B) = {0}.

9.6 (a) Foreach j=1,2,..., m we have A; C UAi so A; C UAZ" Hence UEQ
=1

=1 =1 7

Conversely, since each A; is closed in X and a finite union of closed sets is closed, ; 18

n

=1
7
=1

m

closed in X . Also, since A; C A;, we have U A; C UE So the latter is a closed subset of X
i=1

i=1

containing U A; and by Proposition 9.10 (f) it contains U A;. Hence UE = U A;.
i=1 i=1

i=1 =1
(b) The right-hand side is an intersection of sets closed in X, hence is closed in X. It also

contains ﬂ A; since A; C A; for each i € I. The required result follows by Proposition 9.10 (f).
iel



9.7 Suppose first that f: X — Y is continuous and that A C X. Let y € f(A), say y = f(z)
where © € A. Let U be any open subset of Y containing y. Then f~(U) is open in X and
x € f~1(U). Hence there exists a € AN f~Y(U), and f(a) € U. Hence y € f(A). This shows

that f(A) C f(A).

Conversely suppose that f(A) C f(A) for any subset A C X. In particular we apply this
with A = f=1(V) where V is closed in Y. Then f(f~1(V) C f(f~%(V) CV = V. Hence
f~Y V) C f~YV). Since always f~(V) C f~1(V), we have f~1(V) = f~'(V) hence by
Proposition 9.10 (¢) f~'(V) is closed in X, showing that f is continuous.

9.8 (a) When A is finite, the only open set contained in A is ), so A =0. In this case, as we
saw in Exercise 9.4, A = A. Hence 0A = A.

(b) Suppose that A is infinite. We distinguish two cases.
Case (1) If X \ A is finite then A is open in X so A=A
Case (2) If X \ A is infinite, then X \ B is infinite for any subset B of A, so () is the only

subset of A which is open in X . Hence in this case A= 0.

Since (see Exercise 9.4) A = X when A is infinite, in Case (1) 94 = X \ A while in Case (2)
0A=X.

99 (a) If a € A then by definition there is some open set U of X such that a € U C A. In
particular then a € A. So A C A.

(b) if A C B and z € A then by definition there is some open subset U of X such that
a€lUCA. Since AC B then also U C B, so aeé. This proves that 121 gé.

(c) If A is open in X then for every a € A there is an open set U (namely U = A) such that
acUCA, soac A . This shows A C fol, and together with (a) we get A=A

Conversely if A = A then for every a € A there exists a set open in X, call it U,, such that

a € U, C A. It is straightforward to check that A = U U, which is a union of sets open in X,

acA
so is open in X.

(d) by (a), the interior of A is contained in A. Conversely suppose that a € A. Then there
exists a subset U open in X such that a € U C A. Now for any point x € U we have
xreUCA, soalso x € A . This shows that a € U C ;1, so a is in the interior of A. These
together show that the interior of Ais A

(e) This follows from (c) and (d).

(f) We know that A is open in X from (e). Suppose that B is open in X and that B C A.
By (b) then B C A. Since B is open we have B = B by (c). So B C A, which says that A

is the largest open subset of X contained in A.



9.10 Suppose first that f : X — Y is continuous, and let B C Y. Since B is open in Y,
by continuity f~1(B) is open in X, so since also f~1(B) C f~Y(B) we have that f~1(B) is

contained in the interior of f~!(B).

Conversely suppose that for every subset B C' Y we have f 4(1%) is contained in the interior
of f~1(B). We apply this with B open in Y, when B = B so we get that f~1(B) is contained
in the interior of f~!(B), which says that f~'(B) is open in X. Hence f is continuous.

9.11 Since Aoi C A; we get ﬂ Aol- C ﬂ A;. Also, ﬂ Aoi is the intersection of a finite family of

i=1 i=1 =1

m m
open sets, so is open in X, hence it is contained in the interior of ﬂ A;. Conversely, ﬂ A; C A,
i=1 i=1
m
for each j € {1,2, ..., m}; it follows that the interior of ﬂAi is contained in A; for each

=1

m m
j€{1,2,..., m} so the interior of ﬂ A; 1s contained in ﬂ A; . This proves the result.
i=1 i=1

9.12 This follows since UA(; is open and contained in U A;.
i€l i=1
An example: take X =R, A; =(0,1), Ay =[1, 2). Then Al U Ay = (0, 1) U (1, 2) while
the interior of A; U Ay is (0, 2).

9.13 This follows from the fact that 94 = AN X \ A (Proposition 9.20) since each of A, X \ A

is closed in X hence so is their intersection.

9.14 (a) If A is closed in X then A= A, so 9A :Z\}i C A

By definition 0A = A \ A so in general A=A UJA. Soif 0A C A then both A and A are
subsets of A so A C A and A is closed in X.

9.14 (b) Suppose that A = ). This says that A= A, and since always A C AC A we get
A=A and A= A. From the first of these A is open and from the second A is closed in X.
Conversely if A is both open and closed in X then A = A and A ="A. Hence 94 = Z\fi = 0.

9.15 Since A = A\ A, certainly 9AN A = 0. By the definition A = A\ A we know that
0A C Z, and A C AC A. So the disjoint union 0A U A C A. Conversely since 0A = A \ fol,
we have A C A LOA. These two together show that A = AUoA.

Now if B C X and BN A # () then BN A # () so either BNnA # 0 or BNOA # (.

0.16 First A N (X O\ A) = () since A C A and (X i A) € X\ A. Exercise 9.15 shows that
ANOA=0. Since DA = 9(X \ A) by Corollary 9.21, 9AN (X \ A) = (X \ A) N (X \ A) = 0.
Thus the three sets are pairwise disjoint. To see that their union is X, we use Exercise 9.15 and

the fact that 0A = 9(X \ A) (Corollary 9.21):
AudAU X\ A) = A UAUGAU(X\A) = AUGAUIX \A)U(X\A) =AUX \ A = X.



Additional exercise(s)

1. If f is continuous, then for each open set in the family V the inverse image f~1[V] is
automatically open.

Conversely, since V generates the topology on Y, every open subset W in Y is a union of finite
intersections as below, where each V, ; € V:

W = U (Vvoz,lm Va,k(a))

«

Since the inverse image construction sends unions to unions and intersections to intersections, we
have

f_l[W] = U (f_l[Va,l]m f_l[Va,k(a)])

and this is open because we assumed each set f *1[Va7j] is open.m

2. No points with |v] < 1 can lie in the boundary of either set because such points are in
the interiors of both D? and Ny (0), and not points with |v| > 1 can lie in the boundary of either
set because such points are in the interiors of both R?* — D? and R* — N;(0), Thus a boundary
point for either set must lie on the unit circle S*.

By the preceding observations, it will suffice to show that if v € S! then there are sequences
{a,} in R* — D? and {b,} in N;(0) whose limits are equal to v. We can do this very easily by
taking a,, = (1 + %) -v and b, = (1 — %) -

3. The two displayed sets in the exercise are open, for if H(z,y) = y — f(x), then H is
continuous and the sets in question are the inverse images of (—00,0) and (0, 00) respectively. If
we denote these inverse images by W_ and W, respectively, then R? is the union of the pairwise
disjoint subsets W_, I'y and W.

Clearly the closures of the open sets W_ and W, are contained in W_ UTy and W, UT'f
respectively, so it follows that the boundaries of the open sets W_ and W, must be contained in
I'y. To conclude the proof, we need to show that very point of the graph is a limit point of each
open subset.

We can do this by the same sort of argument which was used in the preceding exercise.
Specifically, the limits of the sequences in W_ and W, given by a, = (m, f(z) — %) and b, =
(z, f(z) + 1) are both equal to (z, f(x)).m

10. Subspaces and product spaces
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Solutions to Chapter 10 exercises

10.1 The subspace topology T4 consists of all sets UNA where U € T. Hence Ty = {0, {a}, A}.

10.2(T1) Since X, @ € T, the family 7, contains N A =0 and X NA=A.

(T2) Suppose that Vi, Vo € T4. Then Vi = ANU; and Vo, = ANU, for some Uy, Uy € T.
Hence ViNVo = (ANU)N(ANT;) = AN (U NUs). But Uy NUy € T since T is a topology,
so VinNnV, € 7y

(T3) Suppose that V; € Ty for all i in some indexing set I. Then for each i € I there exists
some U; € T such that V; = ANU;. Then

Uvi=Janui=anJu

iel iel iel
and since 7 is a topology, UUI isin 7, so UVi isin 7y4.
iel iel

10.3 We have to show that the subspace topology 74 on A is the same as the co-finite topology
on A. First suppose V C A is in the cofinite topology for A. Either V = (), and then
V=AN0e Ty, or A\V is finite. In this latter case, let U = (X \ A)UV Then ANU =V,
and U is in the co-finite topology for X, since X \ U = A\ V which is finite.

Conversely suppose that V = AN U where U is in the co-finite topology 7 for X. Then
either U = (), so ANU = (), and V is in the co-finite topology for A, or X \ U is finite, in
which case A\ V C X \ U is finite and again V' is in the co-finite topology for A.

10.4 First we show that any subset V € 74 is d4-open. Suppose that a € V. We want to show
that there exists € > 0 with B%(a) CV. Now V € Ty so V = ANU for some U open in X.
Then a € U, and U is open in X (i.e. U €T = 73) so there exists ¢ > 0 such that B4(a) C U.
But B4 (a) = AN Bi(a)', so Bl (a) CANU =V as required.

Proof of 1. If x € B%(a) then z € A and d(z, a) = da(z, a) < € so x € AN B.(A). If
v € AN B.(a) then x € A and da(x, a) = d(z, a) < €, so x € B4 (a). Together these show
that Bd4(a) = AN BY(a).

Conversely we wish to show that any da-open subset V' of A isin 7. For each a € V there

exists £, > 0 with B4 (a) C V. Let U = U B! (a). Then U is open in X (as a union of open
acA

balls) and I claim that V= ANU. For

ANU =ANnJ B (a)a) = [JANBL(a) = | Bl (a) = V.

acV aceV acV

where the last equality is straightforward to check. This shows that V € 7, as required.

10.5 Since V is closed in X its complement X \V is openin X. Now A\ (VNA)=AN(X\V)
by Exercise 2.2. So A\ (VN A) € T4. This shows that V' N A is closed in (A, Ty).



10.6 (a) Suppose that W € 74 and that A € 7. Now W = ANU for some U € T since
W € T4. Then since also A € T we have W = ANU € 7T as required.

(b) We have X\ A€ 7 and A\W €Ty s0 AA\W=UnNA forsome U €7T. So
X\W=(X\NAUA\W)=(X\AUUNA)=(X\AUU,

where the last equality follows since U = (UNA)UUN(X\A)) and UN(X\A) C X\ A.

So X \ W is open in X, as the union of open sets, so W is closed in X.

10 .7(a) We use Proposition 3.13: for any subset B CY we have

F71B) = 1) (B).
iel
Now let B be open in Y. For each i € I, continuity of f|U; implies that (f|U;)~(B) is open
in U; and hence, by Exercise 10.6 (a), it is open in X . Hence f~!(B) is a union of sets open in

X, soit is open in X and f is continuous as required.
(b) We again use Proposition 3.13: for any subset B C Y we have

n

7B =JUv)(B).
i=1
Now suppose B is closed in Y. Then continuity of f|V; implies that (f|V;)~(B) is closed in V;
and hence, by Exercise 10.6 (b), it is closed in X . Hence f~!(B) is the union of a finite number

of sets closed in X, so it is closed in X, and f is continuous as required.

10.8 First let V' be any subset of A which is in 74. Then V = ANU for some U open in X.
Let W =BNU. Then Wisin 7Tg,and V=ANU =BN(ANU)=ANn(BNU)=ANnW.
So V' is in the topology on A induced by 7g.

Conversely suppose that V' C A is in the topology on A induced by 7g. Then V =ANW
for some W € 7g, and by definition of 75 we know that W = BN U for some U € 7. Since
V=ANW=An(BNU)=(ANB)NU = ANU, it follows that V' € T, as required.

10.9 (a) First suppose x € B;. Then x € X7, and also for any set W open in X; with z € W
we have W N A # (). Now let U be any set open in X, with € U. Then W = U N X, is open
in X; and contains x, s0 WNA#(). Then UNA=UN(ANX,)=UNX,)NA=WnNA £,
so x € By. Since also x € X; this shows that By C By, N X;.

Conversely suppose that x € By N X;. Then x € X; and for any subset U open in X,
with € U we know UN A # (). Now let W be an open subset of X; with z € W. Then
W = X, NU for some U open in X, with x € U. Hence UN A # (), so since A C X; we have
UNA=UNXNA=WnNA,so WnNA#0D, showing that = € By.

Taking these two together we have B; = By N Xj.



(b) If Xj is closed in X, then Bj, being closed in X, is closed in Xy by Exercise 10.6 (b).
Now B is a closed subset of X5 containing A and hence containing By. Since we already know
from (a) above that By C By we get By = Bs.

10.10 Let f=' : Y — X be the (continuous) inverse function of f. Then f~!|B: B — X is
continuous, by Corollary 10.5. Since f~!|B maps B onto A, it defines a continuous function
from B to A (by Proposition 10.6). In fact this function is inverse to the map g : A — B
defined by f, and shows that ¢ is a homeomorphism from A to B.

Since f is one-one onto Y, and f(A) = B, we have also that f(X\ A) =Y\ B, so f defines

a one-one onto map h: X \ A — Y \ B which is a homeomorphism just as g is.

10.11 Any singleton set {(z, y)} in X X Y is the product {z} x {y} of sets which are open in
X, Y since they have the discrete topology, so {(z, y)} is open in the product topology. Hence

any subset of X x Y is open in the product topology, which is therefore discrete.

10.12 The open sets in S are (), S, {1}, so a basis for the open sets in the product topology on
SxSis {{1} x {1}, {1} xS, S x {1}, S x S}. Thus the open sets in the product topology are:

®7 {(17 1)}7{(]‘7 0)7 (17 ]‘)}7 {(07 ]')’ (17 ]‘)}’ {(07 ]')’ (17 O)’(17 1)}7 S X S

10.13 Consider the case when Y is infinite, and X contains at least two points. Then we may
let U be a non-empty open subset of X with U # X. Then the complement of U X Y is
(X \U) x Y, which is infinite. But U x Y # X x Y. Hence U x Y is not open in the co-finite
topology on X x Y although it is open in the product of the co-finite topologies on X and Y .

10.14 Since the product metrics on X x Y in Example 5.10 are all topologically equivalent, it
is enough to prove this with d = d.,. To prove that 7; coincides with the product topology of
(X, Tx) and (Y, 7y) it is enough to show that any set in a basis for one of these topologies is
open in the other topology.

We use the basis for Tx consisting of all open balls B (z) and similarly for 7y, and
we use the basis for 7y the set of all open balls B%((z, y)). We show first that any open
ball in this basis for 7; is open in the product topology of 7x and 7y . This follows since
Bi((x, y)) = B¥x(x) x B¥ (y): for d((2', /), (x, y) < s iff both d(2/, ) < s and d(v/, y) < s.
But B (z) x B¥ (y) is a (basis) open set for the product of the topologies 7x, 7y . So each
Bi((z,y)) is open in the product topology of (X, Tx), (Y, Ty).

Conversely suppose U x V' is any basis set in the product topology, and let (z, y) € U x V.
Then U is open in X, so there exists 7 > 0 such that B (x) C U. Similarly there exists
s > 0 such that B&(y) C V. Let t = min{r, s}. Then B¢((x,y)) C U x V, since if
d((«', y'), (x, y) <t then both dx(2/, z) <t <r and dy(y,y) <t <s,so 2’ €U and y € V.



10.15 (a) Any open subset W of X X Y is a union U U; x V; for some indexing set I, where
iel
each U; is open in X and each V; is open in Y. We may as well assume that no V; (and no

U;) is empty, since if it were then U; x V; would be empty, and hence does not contribute to the
union. The point of this is that px(U; x V;) = U; for all i € I. Now

px (W) = px (U U; x w) = Jox (Ui x Vi) = Ui,

iel il il
which is open in X as a union of open sets. Similarly py (W) is open in Y.

(b) Consider the set W = {(z,y) € Rx R : 2y = 1}. This is closed in R x R: a painless
way to see this is to consider the function m : R x R — R given by m(x, y) = xy. Then m is
continuous (by Propositions 8.3 and 5.17) and {1} is closed in R, so W = m~!(1) is closed in
R x R by Proposition 9.5. But p; (W) =R\ {0} is not closed in R.

10.16 For use in (ii) and (iii) we check that for any subsets V, W of sets X, Y we have
(X xY)\(VxW)={Xx Y \W)JUu{(X\V)xY} (%)

For (z, y) is in the left-hand side iff either y &€ W or x ¢ V| and the same is true for the
right-hand side.

(i) First suppose that (x, y) is in the interior of A x B. Then there is some set W open in
X x Y such that (z, y) € W C A x B. By definition of the product topology, there exist open
subsets U of X and V of Y such that (z, y) € U x V C W. This shows that x € U C A and
yeV CB,sox¢€ A and y € é, hence (z, y) € A x B. This shows that the interior of A x B
is contained in A x B.

Conversely suppose that (z, y) € A x B. Then there exist sets U,V open in X, Y re-
spectively such that + € U C A and y € V C B. Then U x V is open in X x Y and
(x,y) e UxV C Ax B so (z, y) is in the interior of A x B. Hence A x B is contained in the
interior of A x B.

Together these show that the interior of A x B is AxB.

(i) By (*), X x Y\ (Ax B) = {(X\4) x Y} U{X x (Y \ B)}, the union of two open sets
which is open in X xY so A x B is closed in X x Y. Since also A x B C A x B it follows from
Proposition 9.10 (f) that A x B C A x B.

Conversely suppose that z € A and that y € B. Let W be any open subset of X x Y
containing (z, y). Let U, V' be open subsets of X, Y such that (z,y) € U x V C W. Since
U contains a point a € A and V contains a point b € B, it follows that W contains the point
(a, b) of Ax B. Hence (r, y) € A x B. This shows that A x B C A x B.

Together these prove that A x B =A x B.

(iii) This may be deduced from (i) and (ii). For using (*),

o J—

O(AxB) = A x B\(AxB) = AxB\(AxB) = (A\A)xB)U(Ax(B\B)) = (0AxB)U(AxdB).



10.17 First, t is continuous by Proposition 10.11, since if p;, ps are the projections of X x X
on the first, second factors, then p; ot = py and py, ot = p;, and ps, p; are both continuous.

Now we observe that t is self-inverse, so it is a homeomorphism.

10.18 From Proposition 10.12, f x g is continuous. Since both f and ¢ are 1-1 onto it is easy to

1

see that f x ¢ is 1-1 onto. The inverse of f x gis f~' x g~'. Now f~!, ¢g~! are both continuous

1

since f, g are homeomorphisms, so f~! x ¢! is continuous, again by Proposition 10.12. Hence

f x g is a homeomorphism.

10.19 (a) The graph of f is a curve through (0, 1) which has the lines z = —1, 2 = 1 as vertical
asymptotes. We argue as in Proposition 10.18: let § : X — G be defined by 6(z) = (z, f(x)
and let ¢ : Gy — X be defined by ¢(z, f(x)) = x. Then 6 and ¢ are easily seen to be mutually
inverse. Continuity of # follows from Proposition 10.11 since p; o @ is the identity map of X
and py o6 is the continuous function f. Continuity of ¢ follows since ¢ is the restriction to G

of the continuous projection p; : X x R — X. Hence 6 is a homeomorphism (with inverse ¢).

(b) The graph of f is not easy to draw, but it oscillates up and down with decreasing amplitude
as = approaches 0 from the right. Continuity of f : [0, c0) — R on (0, co) follows by continutiy
of the sine function together with Propositions 8.3 and 5.17. Continuity (from the right) at 0
follows from Exercise 4.14. Now again arguing as in Proposition 10.18 we see that = — (z, f(x))

defines a homeomorphism from [0, co) to Gy.

10.20 Suppose first that the topology on X is discrete. Then as we saw in Exercise 10.11 the
topology on X x X is also discrete, so any subset, in particular A, is open in X x X.

Conversely suppose that A is open in the topological product X x X. Then for any x € X,
(z, z) € A and A is open, so there exist open subsets U, V' of X such that (z, ) e UxV C A.
Then x € U, and z € V. Moreover, if any other point y € U we would have (y, z) € UxV C A.
But (y, z) € A since y # x. So U = {x}, and this says {z} is open in X. Hence X has the
discrete topology.
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Additional exercise(s)

1. Let ‘B denote the closure of B in X. Since B is dense in A, the closure of B in A, which
is B N A is equal to A, which means that B D A. Since B is a closed subset containing A, we
then have B D B = X, and hence B is dense in X .u

2. Follow the hint. The set of points in R? such that zy = 1 is the zero set of the continuous
real valued function f(z,%y) = xy—1 and hence is closed in R?, but its image under either coordinate
projection R? — R is R — {(0,0)}, which is not closed in R.u

3.  The topologies Tx|A and Ty |B consist (respectively) of all subsets of the form UNA and
V' N B where U is open in X and V is open in Y, so the product topology (Tx | A) [[ (Ty) | B
is generated by all sets of the form (U N A) x (VN B) for such U and V.

Similarly, the subspace topology (Tx [[ Ty) | A X B is generated by all sets of the form
(U x V)N (A x B), where U is open in X and V is open in Y.

Since (U x V)N (A x B) = (UN A) x (VN B) by Exercise 2.5 in Sutherland, we see that
both topologies are generated by the same family of subsets, and therefore the two topologies must
coincide.m

4. (i) Suppose that U is a topology on Y such that f : (X,Tx) — (Y, U) is continuous. Then
V € U implies that f~1[V] € Tx, and therefore U is contained in f,Tx. To complete the proof,
it will suffice to show that the latter defines a topology on Y. Clearly () and Y belong to f,Tx
because their inverse images are the open sets () and X respectively. Suppose now that V,, € f.Tx
for all & € A. Then for each o we have f~1[V,] € Tx, and since Tx is a topology for X we know

that
U v
acA

I = U vl

acA

also belongs to Tx, so that the union of the sets V, belongs to f,Tx. Similarly, if V7 and V5 belong
to f.Tx we have f~1[V;] € Tx for i = 1,2, so that

ffvinve] = U] 0 f V)

also belongs to Tx and hence Vi N V5 belongs to f,Tx .=

(74) Suppose that U is a topology on X such that f : (X,U) — (Y,Ty) is continuous. Then
V € Ty implies that f~1[V] € U, and therefore U containes f*Ty. To complete the proof, it will
suffice to show that the latter defines a topology on X. Clearly ) and X belong to f*Ty because
they are the inverse images of the open sets () and Y respectively. Suppose now that V,, € f*Ty for
all & € A. Then for each o we have V,, = f~1[U,] for some U, € Ty, and since Ty is a topology

for Y we know that
LJ Ckﬁ - LJ fin&] = LJ V@

acA acA acA

also belongs to f*Ty. Similarly, if Vi and Va belong to f*Ty and V; = f~![U;] for U; € Tx and
i =1,2, then

f*l

fIvinVy] = 'l n W] = U N Uy

also belongs to Ty and hence V; NV, belongs to f*Ty =
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