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Solutions to Chapter 9 exercises

9.1 The complement of any subset V of a discrete space X is open in X , so V is closed in X .

9.2 In order to be open in X , a subset either has to be empty or to have finite complement in

X . So the subsets of X which are closed in X are X itself and any finite subset of X .

9.3 We may choose for example U = (0, 1) ∪ (2, 4), V = (1, 3). Then

U ∩ V = (2, 3], U ∩ V = [2, 3), U ∩ V = {1} ∪ [2, 3], U ∩ V = ∅.

9.4(a) Using Exercise 9.2, we see that any finite subset A of X is closed in X and hence is its

own closure.

(b) Again using Exercise 9.2 we see that when A is infinite, the smallest closed set containing

A is X . Hence A = X (by Proposition 9.10 (f)).

9.5 (a) This is false in general. For a counterexample, let X be the space {0, 1} with the

discrete topology, let Y be the space {0, 1} with the indiscrete topology, and let f be the

identity function. Then f is continuous for example by Exercise 8.1, (c) or (d). Also, A = {0}
is closed in X but f(A) = A is not closed in Y . (The same counterexample would work for any

set with at least two points in it.)

(b) Again this is false: we have seen a counterexample in Exercise 9.3 - take A = (0, 1)∪ (2, 4)

and B = (1, 3) in R, and we have A ∩ B = (2, 3] while A ∩ B = ∅.
(c) This is false too. Let f be as in the counterexample for (a) and let B = {0}. Then B = {0, 1}
so f−1(B) = {0, 1} but f−1(B) = {0} so f−1(B) = {0} .

9.6 (a) For each j = 1, 2, . . . , m we have Aj ⊆
m⋃

i=1

Ai so Aj ⊆
m⋃

i=1

Ai . Hence

m⋃

i=1

Ai ⊆
m⋃

i=1

Ai .

Conversely, since each Ai is closed in X and a finite union of closed sets is closed,

m⋃

i=1

Ai is

closed in X . Also, since Ai ⊆ Ai , we have
m⋃

i=1

Ai ⊆
m⋃

i=1

Ai . So the latter is a closed subset of X

containing

m⋃

i=1

Ai and by Proposition 9.10 (f) it contains

m⋃

i=1

Ai . Hence

m⋃

i=1

Ai =

m⋃

i=1

Ai .

(b) The right-hand side is an intersection of sets closed in X , hence is closed in X . It also

contains
⋂

i∈I

Ai since Ai ⊆ Ai for each i ∈ I . The required result follows by Proposition 9.10 (f).



9.7 Suppose first that f : X → Y is continuous and that A ⊆ X . Let y ∈ f(A), say y = f(x)

where x ∈ A. Let U be any open subset of Y containing y . Then f−1(U) is open in X and

x ∈ f−1(U). Hence there exists a ∈ A ∩ f−1(U), and f(a) ∈ U . Hence y ∈ f(A). This shows

that f(A) ⊆ f(A).

Conversely suppose that f(A) ⊆ f(A) for any subset A ⊆ X . In particular we apply this

with A = f−1(V ) where V is closed in Y . Then f(f−1(V ) ⊆ f(f−1(V ) ⊆ V = V . Hence

f−1(V ) ⊆ f−1(V ). Since always f−1(V ) ⊆ f−1(V ), we have f−1(V ) = f−1(V ) hence by

Proposition 9.10 (c) f−1(V ) is closed in X , showing that f is continuous.

9.8 (a) When A is finite, the only open set contained in A is ∅ , so A
o

= ∅ . In this case, as we

saw in Exercise 9.4, A = A. Hence ∂A = A.

(b) Suppose that A is infinite. We distinguish two cases.

Case (1) If X \ A is finite then A is open in X so A
o

= A.

Case (2) If X \ A is infinite, then X \ B is infinite for any subset B of A, so ∅ is the only

subset of A which is open in X . Hence in this case A
o

= ∅ .

Since (see Exercise 9.4) A = X when A is infinite, in Case (1) ∂A = X \ A while in Case (2)

∂A = X .

9.9 (a) If a ∈ A
o

then by definition there is some open set U of X such that a ∈ U ⊆ A. In

particular then a ∈ A. So A
o ⊆ A.

(b) if A ⊆ B and x ∈ A
o

then by definition there is some open subset U of X such that

a ∈ U ⊆ A. Since A ⊆ B then also U ⊆ B , so a ∈ B
o

. This proves that A
o ⊆ B

o

.

(c) If A is open in X then for every a ∈ A there is an open set U (namely U = A) such that

a ∈ U ⊆ A, so a ∈ A
o

. This shows A ⊆ A
o

, and together with (a) we get A
o

= A.

Conversely if A
o

= A then for every a ∈ A there exists a set open in X , call it Ua , such that

a ∈ Ua ⊆ A. It is straightforward to check that A =
⋃

a∈A

Ua which is a union of sets open in X ,

so is open in X .

(d) by (a), the interior of A
o

is contained in A
o

. Conversely suppose that a ∈ A
o

. Then there

exists a subset U open in X such that a ∈ U ⊆ A. Now for any point x ∈ U we have

x ∈ U ⊆ A, so also x ∈ A
o

. This shows that a ∈ U ⊆ A
o

, so a is in the interior of A
o

. These

together show that the interior of A
o

is A
o

.

(e) This follows from (c) and (d).

(f) We know that A
o

is open in X from (e). Suppose that B is open in X and that B ⊆ A.

By (b) then B
o ⊆ A

o

. Since B is open we have B
o

= B by (c). So B ⊆ A
o

, which says that A
o

is the largest open subset of X contained in A.



9.10 Suppose first that f : X → Y is continuous, and let B ⊆ Y . Since B
o

is open in Y ,

by continuity f−1(B
o

) is open in X , so since also f−1(B
o

) ⊆ f−1(B) we have that f−1(B
o

) is

contained in the interior of f−1(B).

Conversely suppose that for every subset B ⊆ Y we have f−1(B
o

) is contained in the interior

of f−1(B). We apply this with B open in Y , when B
o

= B so we get that f−1(B) is contained

in the interior of f−1(B), which says that f−1(B) is open in X . Hence f is continuous.

9.11 Since Ai

o ⊆ Ai we get
m⋂

i=1

Ai

o ⊆
m⋂

i=1

Ai. Also,
m⋂

i=1

Ai

o

is the intersection of a finite family of

open sets, so is open in X , hence it is contained in the interior of

m⋂

i=1

Ai. Conversely,

m⋂

i=1

Ai ⊆ Aj

for each j ∈ {1, 2, . . . , m} ; it follows that the interior of
m⋂

i=1

Ai is contained in Aj

o

for each

j ∈ {1, 2, . . . , m} so the interior of
m⋂

i=1

Ai is contained in
m⋂

i=1

Ai

o

. This proves the result.

9.12 This follows since
⋃

i∈I

Ai

o

is open and contained in
m⋃

i=1

Ai .

An example: take X = R, A1 = (0, 1), A2 = [1, 2). Then A1

o ∪ A2

o

= (0, 1) ∪ (1, 2) while

the interior of A1 ∪ A2 is (0, 2).

9.13 This follows from the fact that ∂A = A∩X \ A (Proposition 9.20) since each of A, X \ A

is closed in X hence so is their intersection.

9.14 (a) If A is closed in X then A = A, so ∂A = A \ A
o ⊆ A.

By definition ∂A = A \ A
o

so in general A = A
o ∪ ∂A. So if ∂A ⊆ A then both ∂A and A

o

are

subsets of A so A ⊆ A and A is closed in X .

9.14 (b) Suppose that ∂A = ∅ . This says that A
o

= A, and since always A
o ⊆ A ⊆ A we get

A = A
o

and A = A. From the first of these A is open and from the second A is closed in X .

Conversely if A is both open and closed in X then A = A
o

and A = A. Hence ∂A = A\A
o

= ∅.

9.15 Since ∂A = A \ A
o

, certainly ∂A ∩ A
o

= ∅ . By the definition ∂A = A \ A
o

we know that

∂A ⊆ A, and A
o ⊆ A ⊆ A. So the disjoint union ∂A � A

o ⊆ A. Conversely since ∂A = A \ A
o

,

we have A ⊆ A
o � ∂A. These two together show that A = A

o � ∂A.

Now if B ⊂ X and B ∩ A 	= ∅ then B ∩ A 	= ∅ so either B ∩ A
o 	= ∅ or B ∩ ∂A 	= ∅.

9.16 First A
o ∩ (X \ A)

o

= ∅ since A
o ⊆ A and (X \ A)

o

⊆ X \ A. Exercise 9.15 shows that

A
o ∩ ∂A = ∅. Since ∂A = ∂(X \A) by Corollary 9.21, ∂A ∩ (X \A)

o

= ∂(X \A) ∩ (X \A)
o

= ∅ .

Thus the three sets are pairwise disjoint. To see that their union is X , we use Exercise 9.15 and

the fact that ∂A = ∂(X \ A) (Corollary 9.21):

A
o ∪ ∂A ∪ (X \A)

o

= A
o ∪ ∂A∪ ∂A∪ (X \A)

o

= A
o ∪ ∂A∪ ∂(X \A)∪ (X \A)

o

= A∪X \ A = X.



Additional exercise(s)

1. If f is continuous, then for each open set in the family V the inverse image f−1[V ] is
automatically open.

Conversely, since V generates the topology on Y , every open subset W in Y is a union of finite
intersections as below, where each Vα,j ∈ V:

W =
⋃

α

(

Vα,1 ∩ · · · Vα,k(α)

)

Since the inverse image construction sends unions to unions and intersections to intersections, we
have

f−1[W ] =
⋃

α

(

f−1[Vα,1] ∩ · · · f−1[Vα,k(α)]
)

and this is open because we assumed each set f−1[Vα,j ] is open.

2. No points with |v| < 1 can lie in the boundary of either set because such points are in
the interiors of both D2 and N1(0), and not points with |v| > 1 can lie in the boundary of either
set because such points are in the interiors of both R

2 − D2 and R
2 − N1(0), Thus a boundary

point for either set must lie on the unit circle S1.

By the preceding observations, it will suffice to show that if v ∈ S1 then there are sequences
{an} in R

2 − D2 and {bn} in N1(0) whose limits are equal to v. We can do this very easily by
taking an =

(

1 + 1
n

)

· v and bn =
(

1 − 1
n

)

· v.

3. The two displayed sets in the exercise are open, for if H(x, y) = y − f(x), then H is
continuous and the sets in question are the inverse images of (−∞, 0) and (0,∞) respectively. If
we denote these inverse images by W

−
and W+ respectively, then R

2 is the union of the pairwise
disjoint subsets W

−
, Γf and W+.

Clearly the closures of the open sets W
−

and W+ are contained in W
−
∪ Γf and W+ ∪ Γf

respectively, so it follows that the boundaries of the open sets W
−

and W+ must be contained in
Γf . To conclude the proof, we need to show that very point of the graph is a limit point of each
open subset.

We can do this by the same sort of argument which was used in the preceding exercise.
Specifically, the limits of the sequences in W

−
and W+ given by an =

(

x, f(x) − 1
n

)

and bn =
(

x, f(x) + 1
n

)

are both equal to (x, f(x)).

10. Subspaces and product spaces

Exercises from Sutherland

See the next six pages.
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Solutions to Chapter 10 exercises

10.1 The subspace topology TA consists of all sets U∩A where U ∈ T . Hence TA = {∅, {a}, A} .

10.2 (T1) Since X, ∅ ∈ T , the family TA contains ∅ ∩ A = ∅ and X ∩ A = A.

(T2) Suppose that V1, V2 ∈ TA . Then V1 = A ∩ U1 and V2 = A ∩ U2 for some U1, U2 ∈ T .

Hence V1 ∩ V2 = (A ∩ U1) ∩ (A ∩ U2) = A ∩ (U1 ∩ U2). But U1 ∩ U2 ∈ T since T is a topology,

so V1 ∩ V2 ∈ TA.

(T3) Suppose that Vi ∈ TA for all i in some indexing set I . Then for each i ∈ I there exists

some Ui ∈ T such that Vi = A ∩ Ui. Then

⋃
i∈I

Vi =
⋃
i∈I

A ∩ Ui = A ∩
⋃
i∈I

Ui

and since T is a topology,
⋃
i∈I

UI is in T , so
⋃
i∈I

Vi is in TA .

10.3 We have to show that the subspace topology TA on A is the same as the co-finite topology

on A. First suppose V ⊆ A is in the cofinite topology for A. Either V = ∅ , and then

V = A ∩ ∅ ∈ TA , or A \ V is finite. In this latter case, let U = (X \ A) ∪ V Then A ∩ U = V ,

and U is in the co-finite topology for X , since X \ U = A \ V which is finite.

Conversely suppose that V = A ∩ U where U is in the co-finite topology T for X . Then

either U = ∅ , so A ∩ U = ∅ , and V is in the co-finite topology for A, or X \ U is finite, in

which case A \ V ⊆ X \ U is finite and again V is in the co-finite topology for A.

10.4 First we show that any subset V ∈ TA is dA -open. Suppose that a ∈ V . We want to show

that there exists ε > 0 with BdA
ε (a) ⊆ V . Now V ∈ TA so V = A ∩ U for some U open in X .

Then a ∈ U, and U is open in X (i.e. U ∈ T = Td ) so there exists ε > 0 such that Bd
ε (a) ⊆ U .

But BdA
ε (a) = A ∩ Bd

ε (a)† , so BdA
ε (a) ⊆ A ∩ U = V as required.

Proof of †. If x ∈ BdA
ε (a) then x ∈ A and d(x, a) = dA(x, a) < ε so x ∈ A ∩ Bε(A). If

x ∈ A ∩ Bε(a) then x ∈ A and dA(x, a) = d(x, a) < ε , so x ∈ BdA
ε (a). Together these show

that BdA
ε (a) = A ∩ Bd

ε (a).

Conversely we wish to show that any dA -open subset V of A is in TA . For each a ∈ V there

exists εa > 0 with BdA
εa

(a) ⊆ V . Let U =
⋃
a∈A

Bd
εa

(a). Then U is open in X (as a union of open

balls) and I claim that V = A ∩ U . For

A ∩ U = A ∩
⋃
a∈V

Bd
εa

(a)(a) =
⋃
a∈V

A ∩ Bd
εa

(a) =
⋃
a∈V

BdA
εa

(a) = V,

where the last equality is straightforward to check. This shows that V ∈ TA as required.

10.5 Since V is closed in X its complement X \V is open in X . Now A\ (V ∩A) = A∩ (X \V )

by Exercise 2.2. So A \ (V ∩ A) ∈ TA . This shows that V ∩ A is closed in (A, TA).



10.6 (a) Suppose that W ∈ TA and that A ∈ T . Now W = A ∩ U for some U ∈ T since

W ∈ TA . Then since also A ∈ T we have W = A ∩ U ∈ T as required.

(b) We have X \ A ∈ T and A \ W ∈ TA so A \ W = U ∩ A for some U ∈ T . So

X \ W = (X \ A) ∪ (A \ W ) = (X \ A) ∪ (U ∩ A) = (X \ A) ∪ U,

where the last equality follows since U = (U ∩ A) ∪ (U ∩ (X \ A)) and U ∩ (X \ A) ⊆ X \ A.

So X \ W is open in X , as the union of open sets, so W is closed in X .

10 .7(a) We use Proposition 3.13: for any subset B ⊆ Y we have

f−1(B) =
⋃
i∈I

(f |Ui)
−1(B).

Now let B be open in Y . For each i ∈ I , continuity of f |Ui implies that (f |Ui)
−1(B) is open

in Ui and hence, by Exercise 10.6 (a), it is open in X . Hence f−1(B) is a union of sets open in

X , so it is open in X and f is continuous as required.

(b) We again use Proposition 3.13: for any subset B ⊆ Y we have

f−1(B) =
n⋃

i=1

(f |Vi)
−1(B).

Now suppose B is closed in Y . Then continuity of f |Vi implies that (f |Vi)
−1(B) is closed in Vi

and hence, by Exercise 10.6 (b), it is closed in X . Hence f−1(B) is the union of a finite number

of sets closed in X , so it is closed in X , and f is continuous as required.

10.8 First let V be any subset of A which is in TA . Then V = A ∩ U for some U open in X .

Let W = B ∩ U . Then W is in TB , and V = A ∩ U = B ∩ (A ∩ U) = A ∩ (B ∩ U) = A ∩ W .

So V is in the topology on A induced by TB .

Conversely suppose that V ⊆ A is in the topology on A induced by TB . Then V = A ∩ W

for some W ∈ TB , and by definition of TB we know that W = B ∩ U for some U ∈ T . Since

V = A ∩ W = A ∩ (B ∩ U) = (A ∩ B) ∩ U = A ∩ U , it follows that V ∈ TA as required.

10.9 (a) First suppose x ∈ B1 . Then x ∈ X1 , and also for any set W open in X1 with x ∈ W

we have W ∩A �= ∅ . Now let U be any set open in X2 with x ∈ U . Then W = U ∩X1 is open

in X1 and contains x, so W ∩A �= ∅ . Then U ∩A = U ∩ (A∩X1) = (U ∩X1)∩A = W ∩A �= ∅,
so x ∈ B2 . Since also x ∈ X1 this shows that B1 ⊆ B2 ∩ X1.

Conversely suppose that x ∈ B2 ∩ X1 . Then x ∈ X1 and for any subset U open in X2

with x ∈ U we know U ∩ A �= ∅ . Now let W be an open subset of X1 with x ∈ W . Then

W = X1 ∩ U for some U open in X2 with x ∈ U . Hence U ∩ A �= ∅, so since A ⊆ X1 we have

U ∩ A = U ∩ X1 ∩ A = W ∩ A, so W ∩ A �= ∅, showing that x ∈ B1 .

Taking these two together we have B1 = B2 ∩ X1.



(b) If X1 is closed in X2 then B1 , being closed in X1 , is closed in X2 by Exercise 10.6 (b).

Now B1 is a closed subset of X2 containing A and hence containing B2 . Since we already know

from (a) above that B1 ⊆ B2 we get B1 = B2 .

10.10 Let f−1 : Y → X be the (continuous) inverse function of f . Then f−1|B : B → X is

continuous, by Corollary 10.5. Since f−1|B maps B onto A, it defines a continuous function

from B to A (by Proposition 10.6). In fact this function is inverse to the map g : A → B

defined by f , and shows that g is a homeomorphism from A to B .

Since f is one-one onto Y , and f(A) = B , we have also that f(X \A) = Y \B , so f defines

a one-one onto map h : X \ A → Y \ B which is a homeomorphism just as g is.

10.11 Any singleton set {(x, y)} in X × Y is the product {x} × {y} of sets which are open in

X, Y since they have the discrete topology, so {(x, y)} is open in the product topology. Hence

any subset of X × Y is open in the product topology, which is therefore discrete.

10.12 The open sets in S are ∅, S, {1} , so a basis for the open sets in the product topology on

S ×S is {{1}×{1}, {1}×S, S ×{1}, S ×S}. Thus the open sets in the product topology are:

∅, {(1, 1)}, {(1, 0), (1, 1)}, {(0, 1), (1, 1)}, {(0, 1), (1, 0), (1, 1)}, S × S.

10.13 Consider the case when Y is infinite, and X contains at least two points. Then we may

let U be a non-empty open subset of X with U �= X . Then the complement of U × Y is

(X \ U) × Y , which is infinite. But U × Y �= X × Y . Hence U × Y is not open in the co-finite

topology on X × Y although it is open in the product of the co-finite topologies on X and Y .

10.14 Since the product metrics on X × Y in Example 5.10 are all topologically equivalent, it

is enough to prove this with d = d∞ . To prove that Td coincides with the product topology of

(X, TX) and (Y, TY ) it is enough to show that any set in a basis for one of these topologies is

open in the other topology.

We use the basis for TX consisting of all open balls BdX
r (x) and similarly for TY , and

we use the basis for Td the set of all open balls Bd
s ((x, y)). We show first that any open

ball in this basis for Td is open in the product topology of TX and TY . This follows since

Bd
s ((x, y)) = BdX

s (x) × BdY
s (y): for d((x′, y′), (x, y) < s iff both d(x′, x) < s and d(y′, y) < s.

But BdX
s (x) × BdY

s (y) is a (basis) open set for the product of the topologies TX , TY . So each

Bd
s ((x , y)) is open in the product topology of (X, TX), (Y, TY ).

Conversely suppose U × V is any basis set in the product topology, and let (x, y) ∈ U × V .

Then U is open in X , so there exists r > 0 such that BdX
r (x) ⊆ U . Similarly there exists

s > 0 such that BdY
s (y) ⊆ V . Let t = min{r, s} . Then Bd

t ((x, y)) ⊆ U × V , since if

d((x′, y′), (x, y) < t then both dX(x′, x) < t � r and dY (y′, y) < t � s, so x′ ∈ U and y′ ∈ V.



10.15 (a) Any open subset W of X × Y is a union
⋃
i∈I

Ui × Vi for some indexing set I , where

each Ui is open in X and each Vi is open in Y . We may as well assume that no Vi (and no

Ui ) is empty, since if it were then Ui × Vi would be empty, and hence does not contribute to the

union. The point of this is that pX(Ui × Vi) = Ui for all i ∈ I . Now

pX(W ) = pX

(⋃
i∈I

Ui × Vi

)
=
⋃
i∈I

pX(Ui × Vi) =
⋃
i∈I

Ui,

which is open in X as a union of open sets. Similarly pY (W ) is open in Y .

(b) Consider the set W = {(x, y) ∈ R × R : xy = 1} . This is closed in R × R: a painless

way to see this is to consider the function m : R × R → R given by m(x, y) = xy . Then m is

continuous (by Propositions 8.3 and 5.17) and {1} is closed in R, so W = m−1(1) is closed in

R × R by Proposition 9.5. But p1(W ) = R \ {0} is not closed in R.

10.16 For use in (ii) and (iii) we check that for any subsets V, W of sets X, Y we have

(X × Y ) \ (V × W ) = {X × (Y \ W )} ∪ {(X \ V ) × Y }. (∗)

For (x, y) is in the left-hand side iff either y �∈ W or x �∈ V , and the same is true for the

right-hand side.

(i) First suppose that (x, y) is in the interior of A × B . Then there is some set W open in

X × Y such that (x, y) ∈ W ⊆ A × B . By definition of the product topology, there exist open

subsets U of X and V of Y such that (x, y) ∈ U × V ⊆ W. This shows that x ∈ U ⊆ A and

y ∈ V ⊆ B , so x ∈ A
o

and y ∈ B
o

, hence (x, y) ∈ A
o

×B
o

. This shows that the interior of A×B

is contained in A
o

× B
o

.

Conversely suppose that (x, y) ∈ A
o

× B
o

. Then there exist sets U, V open in X, Y re-

spectively such that x ∈ U ⊆ A and y ∈ V ⊆ B . Then U × V is open in X × Y and

(x, y) ∈ U × V ⊆ A×B so (x, y) is in the interior of A×B . Hence A
o

×B
o

is contained in the

interior of A × B .

Together these show that the interior of A × B is A
o

× B
o

.

(ii) By (*), X × Y \ (A × B) = {(X \ A) × Y } ∪ {X × (Y \ B)} , the union of two open sets

which is open in X ×Y so A×B is closed in X ×Y . Since also A×B ⊂ A×B it follows from

Proposition 9.10 (f) that A × B ⊆ A × B .

Conversely suppose that x ∈ A and that y ∈ B . Let W be any open subset of X × Y

containing (x, y). Let U, V be open subsets of X, Y such that (x, y) ∈ U × V ⊆ W . Since

U contains a point a ∈ A and V contains a point b ∈ B , it follows that W contains the point

(a, b) of A × B . Hence (x, y) ∈ A × B . This shows that A × B ⊆ A × B .

Together these prove that A × B = A × B .

(iii) This may be deduced from (i) and (ii). For using (*),

∂(A×B) = A × B\(A×B)
o

= A×B\(A
o

×B
o

) = ((A\A
o

)×B)∪(A×(B\B
o

)) = (∂A×B)∪(A×∂B).



10.17 First, t is continuous by Proposition 10.11, since if p1, p2 are the projections of X × X

on the first, second factors, then p1 ◦ t = p2 and p2 ◦ t = p1 , and p2, p1 are both continuous.

Now we observe that t is self-inverse, so it is a homeomorphism.

10.18 From Proposition 10.12, f ×g is continuous. Since both f and g are 1-1 onto it is easy to

see that f × g is 1-1 onto. The inverse of f × g is f−1 × g−1 . Now f−1, g−1 are both continuous

since f, g are homeomorphisms, so f−1 × g−1 is continuous, again by Proposition 10.12. Hence

f × g is a homeomorphism.

10.19 (a) The graph of f is a curve through (0, 1) which has the lines x = −1, x = 1 as vertical

asymptotes. We argue as in Proposition 10.18: let θ : X → Gf be defined by θ(x) = (x, f(x)

and let φ : Gf → X be defined by φ(x, f(x)) = x. Then θ and φ are easily seen to be mutually

inverse. Continuity of θ follows from Proposition 10.11 since p1 ◦ θ is the identity map of X

and p2 ◦ θ is the continuous function f . Continuity of φ follows since φ is the restriction to Gf

of the continuous projection p1 : X × R → X. Hence θ is a homeomorphism (with inverse φ).

(b) The graph of f is not easy to draw, but it oscillates up and down with decreasing amplitude

as x approaches 0 from the right. Continuity of f : [0, ∞) → R on (0, ∞) follows by continutiy

of the sine function together with Propositions 8.3 and 5.17. Continuity (from the right) at 0

follows from Exercise 4.14. Now again arguing as in Proposition 10.18 we see that x �→ (x, f(x))

defines a homeomorphism from [0, ∞) to Gf .

10.20 Suppose first that the topology on X is discrete. Then as we saw in Exercise 10.11 the

topology on X × X is also discrete, so any subset, in particular ∆, is open in X × X .

Conversely suppose that ∆ is open in the topological product X ×X . Then for any x ∈ X ,

(x, x) ∈ ∆ and ∆ is open, so there exist open subsets U, V of X such that (x, x) ∈ U×V ⊆ ∆.

Then x ∈ U , and x ∈ V . Moreover, if any other point y ∈ U we would have (y, x) ∈ U×V ⊆ ∆.

But (y, x) �∈ ∆ since y �= x. So U = {x}, and this says {x} is open in X . Hence X has the

discrete topology.
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Additional exercise(s)

1. Let B denote the closure of B in X. Since B is dense in A, the closure of B in A, which
is B ∩ A is equal to A, which means that B ⊃ A. Since B is a closed subset containing A, we
then have B ⊃ B = X, and hence B is dense in X.

2. Follow the hint. The set of points in R
2 such that xy = 1 is the zero set of the continuous

real valued function f(x, y) = xy−1 and hence is closed in R
2, but its image under either coordinate

projection R
2 → R is R − {(0, 0)}, which is not closed in R.

3. The topologies TX |A and TY |B consist (respectively) of all subsets of the form U ∩A and
V ∩ B where U is open in X and V is open in Y , so the product topology (TX | A)

∏

(TY ) | B

is generated by all sets of the form (U ∩ A) × (V ∩ B) for such U and V .

Similarly, the subspace topology (TX

∏

TY ) | A × B is generated by all sets of the form
(U × V ) ∩ (A × B), where U is open in X and V is open in Y .

Since (U × V ) ∩ (A × B) = (U ∩ A) × (V ∩ B) by Exercise 2.5 in Sutherland, we see that
both topologies are generated by the same family of subsets, and therefore the two topologies must
coincide.

4. (i) Suppose that U is a topology on Y such that f : (X,TX) → (Y,U) is continuous. Then
V ∈ U implies that f−1[V ] ∈ TX , and therefore U is contained in f∗TX . To complete the proof,
it will suffice to show that the latter defines a topology on Y . Clearly ∅ and Y belong to f∗TX

because their inverse images are the open sets ∅ and X respectively. Suppose now that Vα ∈ f∗TX

for all α ∈ A. Then for each α we have f−1[Vα] ∈ TX , and since TX is a topology for X we know
that

f−1

[

⋃

α∈A

Vα

]

=
⋃

α∈A

f−1[Vα]

also belongs to TX , so that the union of the sets Vα belongs to f∗TX . Similarly, if V1 and V2 belong
to f∗TX we have f−1[Vi] ∈ TX for i = 1, 2, so that

f−1[V1 ∩ V2] = f−1[V1] ∩ f−1[V2]

also belongs to TX and hence V1 ∩ V2 belongs to f∗TX .

(ii) Suppose that U is a topology on X such that f : (X,U) → (Y,TY ) is continuous. Then
V ∈ TY implies that f−1[V ] ∈ U, and therefore U containes f ∗

TY . To complete the proof, it will
suffice to show that the latter defines a topology on X. Clearly ∅ and X belong to f ∗

TY because
they are the inverse images of the open sets ∅ and Y respectively. Suppose now that Vα ∈ f∗

TY for
all α ∈ A. Then for each α we have Vα = f−1[Uα] for some Uα ∈ TY , and since TY is a topology
for Y we know that

f−1

[

⋃

α∈A

Uα

]

=
⋃

α∈A

f−1[Uα] =
⋃

α∈A

Vα

also belongs to f ∗
TY . Similarly, if V1 and V2 belong to f∗

TY and Vi = f−1[Ui] for Ui ∈ TX and
i = 1, 2, then

f−1[V1 ∩ V2] = f−1[V1] ∩ f−1[V2] = U1 ∩ U2

also belongs to TY and hence V1 ∩ V2 belongs to f∗
TY .
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