Second Supplement to Chapter 10 of Sutherland,

Introduction to Metric and Topological Spaces (Second Edition)

If we are given two functions $f:(a,b]\to\mathbb{R}$ and $g:[b,c)\to\mathbb{R}$ such that f(b)=g(b), then it is often useful to define a new continuous function $h:(a,c)\to\mathbb{R}$ such that h(x)=f(x) on (a,b] and h(x)=g(x) on [b,c); the condition f(b)=g(b) ensures that the function is well-defined. Of course, similar conclusions hold if f or g is defined on the closed interval [a,b] or [b,c] respectively, in which case the domain of definition for h can be extended to include a or c respectively. In particular, we can use this principle to define the absolute value function |x| and prove its continuity. Other examples were considered in the portions of this course corresponding to Chapter 6 in Sutherland; for example, if $f:[a,b]\to\mathbb{R}$ is continuous, then f can be extended to all of \mathbb{R} by setting f(x) equal to f(a) if $x\leq a$ and f(x)=b for $x\geq b$. Strictly speaking, the latter involves two applications of the principle in the first sentence of this paragraph; we need to begin by defining the extended function on $(-\infty,b]$ by taking f to be the constant function with value f(a) on $(-\infty,a]$, and we finish by defining the extended function on all of \mathbb{R} by taking f to be the constant function with value f(b) on $[b,+\infty)$.

The purpose of this document is to formulate and prove a similar method for piecing together continuous functions on arbitrary topological spaces.

THEOREM. Let X be a topological space, let E and F be closed subsets of X, and suppose that $f: E \to Y$ and $g: F \to Y$ are continuous functions into the same topological space Y. If the restrictions $f|E \cap F$ and $g|E \cap F$ are equal, then there is a unique continuous function $h: X \to Y$ such that h|E=f and h|F=g.

Proof. The condition on restrictions implies that there is a unique function of sets $h: X \to Y$ such that h|E=f and h|F=g; we need to show that h is continuous if f and g are continuous.

Let $K \subset Y$ be a closed set; we need to prove that $h^{-1}[K]$ is closed in X. Since $X = E \cup F$ we also have

$$h^{-1}[K] \ = \ \left(E \cap h^{-1}[K]\right) \ \cup \ \left(F \cap h^{-1}[K]\right) \ = \ f^{-1}[K] \ \cup \ g^{-1}[K]$$

where the last equation holds because such that h|E=f and h|F=g. Since f and g are continuous, the sets $f^{-1}[K]$ and $g^{-1}[K]$ are closed in E and F respectively, and since E and F are both closed in E in E in the displayed formulas imply that E is closed in E and hence E and the continuous.