Inverses, images, and inverse images

The purpose of this file is to address a potential ambiguity involving images and inverse images. Suppose that $f: X \rightarrow Y$ is a $1-1$ onto function and its inverse is denoted by f^{-1} as usual. Given a subset $B \subset Y$, one can ask if there is a conflict between two of our notational conventions:

Is the notation $f^{-1}[B]$ for the inverse image of B with respect to f consistent with the notation $f^{-1}[B]$ for the image of B with respect to f^{-1} ?
If there is a conflict, then our notational conventions are defective, so the goal is to show that the two objects in the question are equal. Our treatment is close to a parallel discsussion in Chapter 3 of Introduction to Metric and Topological Spaces (Second Edition), by W. Sutherland.

Characterizations of inverse functions

Before proceeding to the main objective, we give a two alternate characterizations of inverse functions:
(1) The function $f: X \rightarrow Y$ is $1-1$ and onto, and $g: Y \rightarrow X$ is a function such that $x=g(y)$ if and only if $y=f(x)$.
(2) If the function is $f: X \rightarrow Y$, then there is a function $h: Y \rightarrow X$ such that $f{ }^{\circ} h$ is the identity on Y and $h^{\circ} f$ is the identity on X.

To see that the second characterization implies the first, we begin by showing that f is $1-1$ and onto. It is $1-1$ because $f(x)=f\left(x^{\prime}\right)$ implies

$$
x=h(f(x))=h\left(f\left(x^{\prime}\right)\right)=x^{\prime}
$$

and it is onto because $y=f(h(y))$ for all $y \in Y$. To complete the argument, we need to show that $x=h(y)$ if and only if $y=f(x)$. If the latter holds then $h(y)=h(f(x))=x$, and if the former holds then $f(x)=f(h(y))=y$.

To see that the first characterization implies the second, we need to show that $g(f(x))=x$ for all x and $f(g(y))=y$ for all y. Since $x=g(y)$ implies $y=f(x)$, the first one $-g(f(x))=x$ for all x - follows by substituting $y=f(x)$ into $x=g(y)$, and since $y=f(x)$ implies $x=g(y)$ the second one - $f(g(y))=y$ for all y - follows by subsituting $y=f(x)$ into $x=g(y)$. .

Notice that there is at most one function which satisfies these conditions, for if $h^{\prime}: Y \rightarrow X$ satisfies $f \circ h^{\prime}=1_{Y}$ and $h^{\prime} \circ f=1_{X}$ then we have

$$
h^{\prime}=h^{\prime \circ} 1_{Y}=h^{\prime \circ}(f \circ h)=\left(h^{\prime} \circ f\right)^{\circ} h=1_{X} \circ h^{\prime}=h^{\prime}
$$

Resolving the potential ambiguity

We need to prove the following: If $f: X \rightarrow Y$ is $1-1$ and onto, and h is an inverse function to f, then for all $B \subset Y$ we have $f^{-1}[B]=h[B]$.
Here is the proof:
If $x \in f^{-1}[B]$ then $y=f(x) \in B$. This implies that $x=h(y)$ and hence $x \in h[B]$. Conversely, if $x \in h[B]$ then $x=h(y)$ for some $y \in B$ and therefore $f(x)=y \in B$, so that $x \in f^{-1}[B] . ■$

