Inverses, images, and inverse images

The purpose of this file is to address a potential ambiguity involving images and inverse images. Suppose that $f: X \to Y$ is a 1–1 onto function and its inverse is denoted by f^{-1} as usual. Given a subset $B \subset Y$, one can ask if there is a conflict between two of our notational conventions:

Is the notation $f^{-1}[B]$ for the inverse image of B with respect to f consistent with the notation $f^{-1}[B]$ for the image of B with respect to f^{-1} ?

If there is a conflict, then our notational conventions are defective, so the goal is to show that the two objects in the question are equal. Our treatment is close to a parallel discussion in Chapter 3 of *Introduction to Metric and Topological Spaces* (Second Edition), by W. Sutherland.

Characterizations of inverse functions

Before proceeding to the main objective, we give a two alternate characterizations of inverse functions:

- (1) The function $f: X \to Y$ is 1–1 and onto, and $g: Y \to X$ is a function such that x = g(y) if and only if y = f(x).
- (2) If the function is $f: X \to Y$, then there is a function $h: Y \to X$ such that $f \circ h$ is the identity on Y and $h \circ f$ is the identity on X.

To see that the second characterization implies the first, we begin by showing that f is 1–1 and onto. It is 1–1 because f(x) = f(x') implies

$$x = h(f(x)) = h(f(x')) = x'$$

and it is onto because y = f(h(y)) for all $y \in Y$. To complete the argument, we need to show that x = h(y) if and only if y = f(x). If the latter holds then h(y) = h(f(x)) = x, and if the former holds then f(x) = f(h(y)) = y.

To see that the first characterization implies the second, we need to show that g(f(x)) = x for all x and f(g(y)) = y for all y. Since x = g(y) implies y = f(x), the first one - g(f(x)) = x for all x — follows by substituting y = f(x) into x = g(y), and since y = f(x) implies x = g(y) the second one - f(g(y)) = y for all y — follows by substituting y = f(x) into x = g(y).

Notice that there is at most one function which satisfies these conditions, for if $h': Y \to X$ satisfies $f \circ h' = 1_Y$ and $h' \circ f = 1_X$ then we have

$$h' = h' \circ 1_Y = h' \circ (f \circ h) = (h' \circ f) \circ h = 1_X \circ h' = h'.$$

Resolving the potential ambiguity

We need to prove the following: If $f: X \to Y$ is 1–1 and onto, and h is an inverse function to f, then for all $B \subset Y$ we have $f^{-1}[B] = h[B]$.

Here is the proof:

If $x \in f^{-1}[B]$ then $y = f(x) \in B$. This implies that x = h(y) and hence $x \in h[B]$. Conversely, if $x \in h[B]$ then x = h(y) for some $y \in B$ and therefore $f(x) = y \in B$, so that $x \in f^{-1}[B]$.