Detailed arguments for some assertions in Chapter 10

Alternate characterization of the subspace topology

The proof of the following result was not finished in the notes, so here is a complete argument: **PROPOSITION C.** Let $B \subset A \subset X$ where X is a topological space. Then B is closed with respect to the subspace topology on A if and only if $B = A \cap F$ where F is a closed subset of X. **Proof.** B is closed in A if and only if A - B is open in A, which by definition is true if and only

if $A - B = A \cap V$ where V is open in X.

Regardless of whether V is open in X, if $A - B = X \cap V$ we have

 $B = A - (A - B) = A - (X \cap V) = (X - V) \cap A .$

Combining these two observations, we see that B is closed in A if and only if $B = (X - V) \cap A$ for some open subset $V \subset X$, which is equivalent to saying that $B = F \cap A$ where F is a closed subset of X.

Base for the product topology

We have defined the subspace topology on a product $X \times Y$ to be the topology generated by all subsets of the form $U \times V$, where U is open in X and V is open in Y. It turns out that this family of subsets is actually a **base** for the product topology and on page 4 of math145Anotes10.pdf we give a marginal reference to Sutherland for this fact. The proof is a direct consequence of two observations:

Observation 1. The family \mathcal{P} of all subsets of the form $U \times V$, where U is open in X and V is open in Y, is closed under finite intersections.

Observation 2. If \mathcal{F} is a subbase for the topology \mathcal{T} and \mathcal{F} is closed under taking finite intersections, then \mathcal{F} is a base for \mathcal{T} .

If we combine these with the definition of product topology as the topology generated by \mathcal{P} , we see that the latter is in fact a base for \mathcal{T} .

Verification of Observation 1. By induction it will suffice to verify that the family \mathcal{P} is closed under twofold intersections (explain this in more detail!). The property for twofold intersections follows from the set-theoretic identity

$$(U \times V) \cap (U' \times V') = (U \cap U') \times (V \cap V')$$

the fact that the families of open sets for the topologies of both X and Y are closed under taking the intersections of subsets in the respective families.

Verification of Observation 2. The topology \mathcal{T} is given by arbitrary unions of finite intersections of subsets in \mathcal{F} , and we are asuming that the latter is closed under taking finite intersections, so it follows that every open set in \mathcal{T} is a union of sets in \mathcal{F} . But this condition is the definition of a base for the topology \mathcal{T} .