Urysohn's Lemma

As suggested in math145Anotes11.pdf a topological space (X, \mathcal{T}) is said to be normal if for each pair of disjoint closed subsets $E, F \subset X$ there are disjoint open sets U, V such that $E \subset U$ and $F \subset V$ (see the picture on the final page of this file). The following deep result has far-reaching consequences in further studies of topological spaces:

Theorem. If X is a topological space then the following conditions are equivalent:

(i) The space X is normal.

(ii) For each pair of disjoint closed subsets $E, F \subset X$ there is a continuous function $f : X \to [0,1]$ such that f|E = 0 and f|F = 1.

The implication $(ii) \Rightarrow (i)$ follows from the same considerations in the proof for metric spaces: We need only take $U = f^{-1} \left[\left[0, \frac{1}{2} \right] \right]$ and $V = f^{-1} \left[\left(\frac{1}{2}, 1 \right] \right]$. On the other hand the converse is highly nontrivial, and it is called **Urysohn's Lemma**. A detailed discussion of this result is given on pages 208–214 of Munkres, *Topology* (Second Edition). The *Wikipedia* article

https://en.wikipedia.org/wiki/Pavel_Urysohn

contains biographical information about the mathematician who discovered this result.