## A continuous family of product metrics

Throughout the discussion below, $\left(X, d^{X}\right)$ and $\left(Y, d^{Y}\right)$ will denote fixed metric spaces. Furthermore, unless explicitly stated otherwise, $\mathbf{z}_{\alpha}=\left(x_{\alpha}, y_{\alpha}\right)$ will denote a point in the Cartesian product $X \times Y$

We shall give a detailed verification that for each real number $p \geq 1$ the function

$$
d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left(d^{X}\left(x_{1}, x_{2}\right)^{p}+d^{Y}\left(y_{1}, y_{2}\right)^{p}\right)^{1 / p}
$$

defines a metric on $X \times Y$, and that these metrics have the following basic properties:
(1) If $p>q \geq 1$, then $d_{q} \leq d_{p}$; this holds if $p$ and $q$ are real numbers and also if $p=\infty$ (where the $d_{\infty}$ metric is defined as in Exercise 5.7 on page 42 of Sutherland).
(2) We have

$$
\lim _{p \rightarrow \infty} d_{p}=d_{\infty}
$$

The discussions in product-metrics1.pdf and product-metrics2.pdf explain why $d_{p}$ is a metric space when $X=Y=\mathbb{R}$ with the standard metric, and we shall assume this result here. It will also be helpful to verify (1) and (2) in that special case before considering a product of two arbitrary metric spaces.

LEMMA. Let $u$ and $v$ be real numbers such that $u \geq v \geq 0$, let $\mathbf{w}=(u, v)$, and for each real number $p \geq 1$ let

$$
|\mathbf{w}|_{p}=\left(u^{p}+v^{p}\right)^{1 / p}
$$

Then the following hold:
(1) If $p>q \geq 1$, then $|\mathbf{w}|_{p} \leq|\mathbf{w}|_{q}$ (hence the $p$-norm is a nonincreasing function of $p$ ).
(2) The limit of $|\mathbf{w}|_{p}$ as $p \rightarrow \infty$ is equal to $u=|\mathbf{w}|_{\infty}$ (where the latter is defined as in Sutherland and the previously cited documents).
Proof. We begin with (1). If $v=0$ then the definitions immediately imply that $|\mathbf{w}|_{p}=u=|\mathbf{w}|_{q}$, so equality holds in these special cases. Therefore we shall assume $v>0$ (hence also $u>0$ ) from now on. Suppose now that $u>v$ and write $(u, v)=(c s, c t)=c \mathbf{w}_{0}$, where $s^{q}+t^{q}=1$ and $c=|\mathbf{w}|_{q}$. Then we must have $0<u, v<1$, so that $s^{p}+t^{p}<s^{q}+t^{q}=1$ because $g(p)=y^{p}$ is a strictly decreasing function of $p$ if $0<y<1$. It follows that

$$
|\mathbf{w}|_{p}=c\left|\mathbf{w}_{0}\right|_{p} c\left(s^{p}+t^{p}\right)^{1 / p}<c\left(s^{q}+t^{q}\right)^{1 / p}=c=|\mathbf{w}|_{q}
$$

because $f(x)=x^{1 / p}=\exp \left(\log _{e} x / p\right)$ is a nondecreasing function for $x>0$. This proves (1).■
We shall now prove (2). As in the preceding case, if $v=0$ then we have $|\mathbf{w}|_{p}=u$ for $1 \leq p \leq \infty$, so the limit statement is true for trivial reasons. Assume now that $v>0$ (hence also $u>0$ ). Since $u \geq v>0$, let $t=v / u$, so that $|\mathbf{w}|_{p}=u\left(1+t^{p}\right)^{1 / p}$. The conclusion is equivalent to

$$
\lim _{p \rightarrow \infty}\left(1+t^{p}\right)^{1 / p}=1 \quad \text { if } \quad 0<t \leq 1
$$

Taking logarithms, we see that this limit statement is equivalent to

$$
\lim _{p \rightarrow \infty} \frac{\log _{e}\left(1+t^{p}\right)}{p}=0 \quad \text { if } 0<t \leq 1
$$

and the latter is true because $1 / p$ goes to 0 as $p \rightarrow \infty$ and $0<t \leq 1$ implies that $0<\log _{e}\left(1+t^{p}\right) \leq$ $\log _{e} 2$, so that the limit formula follows from the Squeeze Principle for limits (see page 6 of solutions01w14.pdf for a statement of this principle)
Proof(s) of the main result(s)

Given $\mathbf{z}_{i}=\left(x_{i}, y_{i}\right) \in X \times Y$ for $i=1,2,3$, let $u_{i, j}=d^{X}\left(x_{i}, x_{j}\right)$ and $v_{i, j}=d^{Y}\left(y_{i}, y_{j}\right)$, and let $\alpha_{i, j} \in \mathbb{R}^{2}$ be given by $\left(u_{i, j}, v_{i, j}\right)$. Then our definitions yield the identity $d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left|\alpha_{i, j}\right|_{p}$.

The nonnegativity and symmetry properties of $d_{p}$ are immediate consequences of the corresponding results for $d^{X}$ and $d^{Y}$, and if $d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{3}\right)=0$ then $u_{1,3}^{p}+v_{1,3}^{p}=0$, which happens if and only if each summand is zero, which in turn happens if and only if $\mathbf{z}_{1}=\mathbf{z}_{2}$. Therefore it is only necessary to verify that the Triangle Inequality holds for $d_{p}$.

The Triangle Inequalities for $d^{X}$ and $d^{Y}$ imply that the inequalities $u_{1,3} \leq u_{1,2}+u_{2,3}$ and $v_{1,3} \leq v_{1,2}+v_{2,3}$, and since $\left(a^{p}+b^{p}\right)^{1 / p}$ is an increasing function of $a$ and $b$, we have the following chain of inequalities:

$$
d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{3}\right)=\left(u_{1,3}^{p}+v_{1,3}^{p}\right)^{1 / p} \leq\left(\left(u_{1,2}+u_{2,3}\right)^{p}+\left(v_{1,2}^{p}+v_{2,3}\right)^{p}\right)^{1 / p}=\left|\alpha_{1,2}+\alpha_{1,3}\right|_{p}
$$

Since $|\cdots|_{p}$ defines a distance on $\mathbb{R}^{2}$ we know that the right hand side of this expression is less than or equal to

$$
\left|\alpha_{1,2}\right|_{p}+\left|\alpha_{1,3}\right|_{p}=d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)+d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{3}\right) .
$$

If we concatenate (string together) these inequalities, we obtain the Triangle Inequality for $d_{p}$.■
The verification of (1) and (2) for the $d_{p}$ metrics is now straightforward. Since

$$
d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left|\alpha_{1,2}\right|_{p}
$$

and the right hand side is a nonincreasing function of $p$ by the first part of the Lemma, the left hand side is also a nondecreasing function of $p$, so that $p>q$ implies $d_{p} \leq d_{q}$. Turning to the limit identity, by the Lemma we know that

$$
d_{p}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left|\alpha_{1,2}\right|_{p} \longrightarrow\left|\alpha_{1,2}\right|_{\infty}=d_{\infty}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)
$$

so the limit of the $d_{p}$ metrics is equal to the $d_{\infty}$ metric.
COROLLARY. The metrics $d_{p}$, for $1 \leq p \leq \infty$, define the same topology on $X \times Y$.
Proof. This follows from Proposition 6.34 in Sutherland (see page 70) and the inequalities

$$
\frac{1}{2} \cdot d_{q} \leq \frac{1}{2} \cdot d_{1} \leq d_{\infty} \leq d_{p} \leq d_{q} \leq d_{1} \leq 2 \cdot d_{\infty} \leq 2 \cdot d_{p}
$$

which hold for all $p, q$ such that $1 \leq q \leq p<\infty$.

