
A continuous family of product metrics

Throughout the discussion below, (X, dX ) and (Y, dY ) will denote fixed metric spaces. Fur-
thermore, unless explicitly stated otherwise, zα = (xα, yα) will denote a point in the Cartesian
product X × Y

We shall give a detailed verification that for each real number p ≥ 1 the function

dp(z1, z2) =
(

dX(x1, x2)
p + dY (y1, y2)

p
)1/p

defines a metric on X × Y , and that these metrics have the following basic properties:

(1) If p > q ≥ 1, then dq ≤ dp; this holds if p and q are real numbers and also if p = ∞ (where
the d∞ metric is defined as in Exercise 5.7 on page 42 of Sutherland).

(2) We have
lim

p→∞

dp = d∞ .

The discussions in product-metrics1.pdf and product-metrics2.pdf explain why dp is a metric
space when X = Y = R with the standard metric, and we shall assume this result here. It will also
be helpful to verify (1) and (2) in that special case before considering a product of two arbitrary
metric spaces.

LEMMA. Let u and v be real numbers such that u ≥ v ≥ 0, let w = (u, v), and for each real
number p ≥ 1 let

|w|p = (up + vp)
1/p

.

Then the following hold:

(1) If p > q ≥ 1, then |w|p ≤ |w|q (hence the p-norm is a nonincreasing function of p).

(2) The limit of |w|p as p → ∞ is equal to u = |w|∞ (where the latter is defined as in
Sutherland and the previously cited documents).

Proof. We begin with (1). If v = 0 then the definitions immediately imply that |w|p = u = |w|q ,
so equality holds in these special cases. Therefore we shall assume v > 0 (hence also u > 0) from
now on. Suppose now that u > v and write (u, v) = (cs, ct) = cw0, where sq + tq = 1 and c = |w|q .
Then we must have 0 < u, v < 1, so that sp + tp < sq + tq = 1 because g(p) = yp is a strictly
decreasing function of p if 0 < y < 1. It follows that

|w|p = c |w0|p c (sp + tp)1/p < c (sq + tq)1/p = c = |w|q

because f(x) = x1/p = exp(loge x/p) is a nondecreasing function for x > 0. This proves (1).

We shall now prove (2). As in the preceding case, if v = 0 then we have |w|p = u for 1 ≤ p ≤ ∞,
so the limit statement is true for trivial reasons. Assume now that v > 0 (hence also u > 0). Since
u ≥ v > 0, let t = v/u, so that |w|p = u (1 + tp)1/p. The conclusion is equivalent to

lim
p→∞

(1 + tp)1/p = 1 if 0 < t ≤ 1 .

Taking logarithms, we see that this limit statement is equivalent to

lim
p→∞

loge (1 + tp)

p
= 0 if 0 < t ≤ 1
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and the latter is true because 1/p goes to 0 as p → ∞ and 0 < t ≤ 1 implies that 0 < loge (1+ tp) ≤
loge 2, so that the limit formula follows from the Squeeze Principle for limits (see page 6 of
solutions01w14.pdf for a statement of this principle).

Proof(s) of the main result(s)

Given zi = (xi, yi) ∈ X × Y for i = 1, 2, 3, let ui,j = dX(xi, xj) and vi,j = dY (yi, yj), and let
αi,j ∈ R

2 be given by (ui,j , vi,j). Then our definitions yield the identity dp(z1, z2) = |αi,j |p.

The nonnegativity and symmetry properties of dp are immediate consequences of the corre-
sponding results for dX and dY , and if dp(z1, z3) = 0 then up

1,3 + vp
1,3 = 0, which happens if and

only if each summand is zero, which in turn happens if and only if z1 = z2. Therefore it is only
necessary to verify that the Triangle Inequality holds for dp.

The Triangle Inequalities for dX and dY imply that the inequalities u1,3 ≤ u1,2 + u2,3 and
v1,3 ≤ v1,2 + v2,3, and since (ap + bp)1/p is an increasing function of a and b, we have the following
chain of inequalities:

dp(z1, z3) =
(

up
1,3 + vp

1,3

)1/p
≤

(

(u1,2 + u2,3)
p

+
(

vp
1,2 + v2,3

)p)1/p
= |α1,2 + α1,3|p

Since | · · · |p defines a distance on R
2 we know that the right hand side of this expression is less

than or equal to
|α1,2|p + |α1,3|p = dp(z1, z2) + dp(z1, z3) .

If we concatenate (string together) these inequalities, we obtain the Triangle Inequality for dp.

The verification of (1) and (2) for the dp metrics is now straightforward. Since

dp(z1, z2) = |α1,2|p

and the right hand side is a nonincreasing function of p by the first part of the Lemma, the left
hand side is also a nondecreasing function of p, so that p > q implies dp ≤ dq . Turning to the limit
identity, by the Lemma we know that

dp(z1, z2) = |α1,2|p −→ |α1,2|∞ = d∞(z1, z2)

so the limit of the dp metrics is equal to the d∞ metric.

COROLLARY. The metrics dp, for 1 ≤ p ≤ ∞, define the same topology on X × Y .

Proof. This follows from Proposition 6.34 in Sutherland (see page 70) and the inequalities

1

2
· dq ≤ 1

2
· d1 ≤ d∞ ≤ dp ≤ dq ≤ d1 ≤ 2 · d∞ ≤ 2 · dp

which hold for all p, q such that 1 ≤ q ≤ p < ∞.
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