Problems for Quiz 1

January 29, 2019

1. Let (X, d) be a metric space, and let $f: X \rightarrow \mathbb{R}$ be a continuous function. Prove that the function

$$
d^{\prime}(x, y)=d(x, y)+|f(x)-f(y)|
$$

also defines a metric on X.
2. Let $r(x, y)=\left|x^{2}-y^{2}\right|$, where x and y are real numbers. Prove that r defines a metric on the set $[0, \infty)$ of nonnegative reals but does not define a metric on the set \mathbb{R} of all real numbers.

