Solutions for Quiz 1, Winter 2019

1. Let (X, d) be a metric space, and let $f: X \rightarrow \mathbb{R}$ be a continuous function. Prove that the function

$$
d^{\prime}(x, y)=d(x, y)+|f(x)-f(y)|
$$

also defines a metric on X.

SOLUTION

We shall verify the defining properties of a metric in order:
The function d^{\prime} is a sum of two nonnegative functions and hence is nonnegative. Furthermore, if $d^{\prime}(x, y)=0$ then the two summands $d(x, y)$ and $|f(x)-f(y)|$ must

Next, we need to verify that $d^{\prime}(x, y)=d^{\prime}(y, x)$ for all x and y. This follows because the corresponding property holds for the summands. Specifically, since d is a metric we have $d(x, y)=d(y, x)$, and since the absolute value satisfies $|a|=|-a|$ we have $|f(x)-f(y)|=|f(y)-f(x)|$. If we add these equations it follows that $d(x, y)=d(y, x)$.

Finally, we need to verify the Triangle Inequality. Examine the summands separately. The first one satisfies $d(x, z) \leq d(x, y)+d(y, z)$ because it is a metric, and the second one satisfies

$$
|f(x)-f(z)|=|(f(x)-f(y))+(f(y)-f(z))| \leq|f(x)-f(y)|+|f(y)-f(z)|
$$

by the Triangle Inequality for the usual metric on the real line. If we add the inequalities $a \leq c$ and $b \leq d$, we obtain the new inequality $a+b \leq b+d$, and if we now apply this to the preceding inequalities, we obtain the Triangle Inequality for d^{\prime}.

Note that we did not use the continuity assumption on f.
2. Let $r(x, y)=\left|x^{2}-y^{2}\right|$, where x and y are real numbers. Prove that r defines a metric on the set $[0, \infty)$ of nonnegative reals but does not define a metric on the set \mathbb{R} of all real numbers.

SOLUTION

We shall first show that the function r defines a metric on the positive real numbers. Since absolute values are nonnegative, the quantity $r(x, y)$ is always nonnegative. Furthermore, it is zero if and only if $0=\left|x^{2}-y^{2}\right|$, which is true if and only if $x^{2}=y^{2}$. Over the positive integers this happens if and only if $x=y$.

Next, we need to verify that $r(x, y)=r(y, x)$ for all x and y. As before, since the absolute value satisfies $|a|=|-a|$ we have $\left|x^{2}-y^{2}\right|=\left|y^{2}-x^{2}\right|$, which means that that $r(x, y)=r(y, x)$.

The Triangle Inequality now follows from the following equations and inequalities:

$$
r(x, z)=\left|x^{2}-z^{2}\right|=\left|\left(x^{2}-y^{2}\right)+\left(y^{2}-z^{2}\right)\right| \leq\left|x^{2}-y^{2}\right|+\left|y^{2}-z^{2}\right|=r(x, y)+r(y, z)
$$

and therefore r defines a metric on the positive real numbers.
However, r does not define a metric on the set of all real numbers. If $y=-x$ is nonzero then $r(x, y)=0$ but $x \neq y$, so over the reals the function r fails to satisfy one of the defining conditions for a metric on the set of all real numbers.-

