Review for Quiz 2 (2017) continued

11. Let F_{n} be the closed interval

$$
\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right]
$$

(where n runs through the nonnegative integers) so that $\cup_{n} F_{n}=(0,1]$, a subset of the real line which is not open.
12. We can take A to be $[0,1]$ and B to be $(0,+\infty)$ as a specific pair of examples. More generally, if X is a metric space, and we take $U \subset X$ to be an open set which is not closed and A to be a closed set which contains the limit points of U, then $U \cup A$ will be closed.

