Problems for Quiz 2

~

February 19, 2019

1. Let X be an infinite set, let $A \subset X$ be an infinite subset, let \mathcal{U} be the cofinite topology on X, and let \mathcal{W} be the induced subspace topology on A. Explain why \mathcal{W} is equal to the cofinite topology on A. [*Hint:* If $B \subset A$ then $A - B = A \cap (X - B)$.]

2. Let $X = \{1, 2, 3\}$, and let \mathcal{U} be the topology on X whose open sets are X, the empty set, and $\{1\}$. Give an example of a second topology \mathcal{V} on X such that $\mathcal{U} \cup \mathcal{V}$ is not a topology for X, and give a reason why it is not a topology.