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5. Metric spaces

Even-numbered exercises from Sutherland

5.2. Several applications of the Triangle Inequality yield

d(x, y) ≤ d(x, z) + d(z, t) + d(t, y) , d(z, t) ≤ d(z, x) + d(x, y) + d(y, t)

and if we combine these with the symmetry property for distances we obtain the inequalities

d(x, y) − d(z, t) ≤ d(x, z) + d(y, t) , d(z, t) − d(x, y) ≤ d(x, z) + d(y, t) .

The right hand sides of these two inequalities are identical, and each term on the left is the negative
of the other. Therefore the absolute value of the left hand side is less than or equal to the right
hand side, which is just the statement of the conclusion for the exercise.

5.4. Each of the functions f(x) = x3, ex and tan−1(x) is a strictly increasing real valued
function, so it is enough to show that if f is such a function then |f(x) − f(y)| defines a metric on
R.

Since |f(x)− f(y)| = |f(y)− f(x)| ≥ 0, the nonnegativity and symmetry properties hold, and
furthermore since |f(x)− f(y)| = 0 implies f(x) = f(y), the strictly increasing nature of f implies
that if |f(x) − f(y)| = 0 then x = y. Finally, by the properties of absolute values we have

|f(x) − f(z)| ≤ |f(x) − f(y)| + |f(y) − f(z)|

so the Triangle Inequality is also satisfied. This completes the verification that |f(x)−f(y)| defines
a metric on R.

5.6. In this course we shall use Nη(p) to denote the set called Bη(p) in Sutherland.

We are given that y ∈ Nε/2(x), and we need to show that if z ∈ Nε/2(y) then z ∈ Nε(x). The
given conditions imply that

d(x, z) ≤ d(x, y) + d(y, z) < 1
2

ε + 1
2

ε = ε

so that z ∈ Nε(x), and therefore Nε/2(y) is contained in Nε(x).

5.8. As usual, we have to prove implications in both directions.

(⇐) By the definition of boundedness on page 50 of Sutherland, if A ⊂ X is bounded, then
there is some x0 ∈ X such that d(a, x0) ≤ K for some K > 0. The Triangle Inequality then implies
that for all a, a′ ∈ A we have

d(a, a′) ≤ d(a, x0) + d(x0, a
′) ≤ K + K = 2K
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so we can take ∆ = 2K.

(⇒) If a0 ∈ A, then the hypothesis implies that d(a0, a) ≤ ∆, and hence A is bounded in the
sense of the previously cited definition.

5.10. We need to show that if x, y ∈ A ∪ B then d(x, y) ≤ diamA + diamB.

Since diamA,diam B ≤ diamA + diamB, clearly the last term is an upper bounnd for d(x, y)
if both x and y lie in either A or B. Thus it is only necessary to verify the statement in the first
paragraph when x ∈ A and y ∈ B.

Let p ∈ A ∩ B. Then d(x, p) ≤ diamA and d(y, p) ≤ diamB imply that

d(x, y) ≤ d(x, p) + d(p, y) ≤ diamA + diamB

so that the right hand side is an upper bound for the distances between points of A ∪ B. Since
diamA ∪ B is the least upper bound for this set, we must have diamA ∪ B ≤ diamA + diamB.

5.12. Discussion of the method of proof. In order to show that the first three constructions
define metrics, it is only necessary to verify that they satisfy all the defining properties. In order
to show that the last construction does not define a metric, it suffices to show that the Triangle
Inequality does not hold; in other words, for some metric space X there are points x, y, z ∈ X such
that d(4)(x, z) > d(4)(x, y) + d(4)(y, z), or equivalently d(x, z)2 > d(x, y)2 + d(y, z)2.

Implementation of the method. To verify that d(1) = k ·d is a distance function, observe that the
nonnegativity and symmetry properties follow immediately from the defining property and the fact
that the product of two positive numbers is positive. Next, note that d(1)(x, y) = k · d(x, y) = 0
implies d(x, y) = 0, so that x = y. Finally, the chain of relations

d(1)(x, z) = k ·d(x, y) ≤ k ·( d(x, y) + d(y, z) ) = k ·d(x, y)+k ·d(y, z) = d(1)(x, y)+d(1)(y, z)

shows that d(1) satisfies the Triangle Inequality.

To verify that d(2) = min {d, 1} is a distance function, observe that the nonnegativity and
symmetry properties follow immediately from the defining property and the fact that the minimum
of 1 and a nonnegative number is nonnegative. Next, note that d(2)(x, y) = 0 implies that the
minimum of d(x, y) and 1 is equal to zero, which means that d(x, y) = 0 and hence x = y; on the
other hand, the definitions also implies that d(x, x) = 0. Finally, proving the Triangle Inequality
requires a case by case discussion depending on whether or not the various distances are less than
or equal to 1 or greater than 1.

(a) If d(x, z), d(x, y) and d(y, z) are all less than or equal to 1, then the Triangle Inequality for
d(2) with this choice of x, y, z is a consequence of d(2) = d and the validity of the Triangle
Inequality for d.

(b) If d(x, z) ≤ 1 and at least one of d(x, y) and d(y, z) is greater than 1, then 1 ≤ d(2)(x, y)+
d(2)(y, z) implies the Triangle Inequality for d(2) with this choice of x, y, z.

(c) If d(x, z) > 1 and at least one of d(x, y) and d(y, z) is greater then 1 = d(2)(x, z) and
1 = d(2)(x, y) or d(2)(y, z) will yield yield the Triangle Inequality for d(2) with this choice
of x, y, z.

(d) If d(x, z) > 1 and both of d(x, y) and d(y, z) are less than or equal to 1, then 1 =
d(2)(x, z) < d(x, z) ≤ d(x, y) + d(x, z) = d(2)(x, y) + d(2)(y, z), which yields the Triangle
Inequality for d(2) with this choice of x, y, z.
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To verify that d(3) = d/(1 + d) is a distance function, we need some simple properties of the
function which sends d ≥ 0 to d/(1 + d); namely, its value is zero when d = 0, and the identity

d

1 + d
= 1 −

1

1 + d

shows that the function is strictly increasing and converges to 1 as d → ∞. Once again, the
nonnegativity and symmetry properties follow immediately, and if

0 = d(3)(x, y) =
d(x, y)

1 + d(x, y)

then the preceding discussion implies that d(x, y) = 0, so that x = y. To verify that the Triangle
Inequality holds, note that the strictly increasing nature of d/(1 + d) implies that

d(3)(x, z) =
d(x, z)

1 + d(x, z)
≤

d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)
=

d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)
.

Since d(x, y), d(y, z) ≤ d(x, y) + d(y, z), their reciprocals are unequal in the reverse order, which
implies that the right hand side of the display is less than or equal to

d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
= d(3)(x, y) + d(3)(y, z).

This yields the Triangle Inequality for d(3).

Finally, to show that d(4) is not a metric, as noted at the beginning of this solution it is enough
to find a metric space X and points x, y, z ∈ X such that d(x, z)2 > d(x, y)2 + d(y, z)2. One simple
candidate for X is the real number system with the usual metric, and for this example we need to
find x, y, z such that (x − z)2 > (x − y)2 + (y − z)2. Since the algebra will simplify if we have as
many zeros as possible, let’s take y = 0, so that we need to find x and z such that (x−z)2 > x2+z2.
Trial and error suggests that we take z = −x and see that

(x − z)2 = 4x2 , x2 + z2 = 2x2

so that the Triangle Inequality fails if x = 1, y = 0 and z = −1.

5.14. Suppose that x and y in R
n have coordinates xi and yi respectively, and let ui =

|xi − yi|. Then each ui is nonnegative, and everything reduces to proving the following chain of
inequalities:

maxi ui ≤

√

∑

i

u2
i ≤

∑

i

ui ≤ n · maxi ui

To see the first inequality, notice that for each i we have

u2
i ≤

∑

j

u2
j
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and that the inequality follows by taking square roots. Next, we have

∑

i

u2
i ≤

∑

i

u2
i + 2 ·

∑

j<k

ujuk =

(

∑

i

ui

)2

and the second inequality follows from this by taking square roots. Finally, if ui ≤ vi for all i
then

∑

i ui ≤
∑

i vi; if we take each vi to be the maximum u∗ of {u1, · · · , un}, then we have
∑

ui ≤ n · u∗, verifying the final inequality.

5.16. We shall introduce some shorter notation for the various distances with arise. Specif-
ically, if i, j ∈ {1, 2, 3} let ui,j = dX(xi, xj) and vi,j = dY (yi, yj). Set zk equal to (xk, yk).

(a) The nonnegativity and symmetry properties follow immediately, so suppose that the dp

distance between z1 = (x1, y1) and z2 = (x2, y2) is zero, where p = 1, 2,∞. This conclusion will
follow if in each case we can prove that u1,2 = v1,2 = 0. — If d1 = 0, then u1,2 + v1,2 = 0, and
since u1,2, v1,2 ≥ 0 we must have u1,2 = v1,2 = 0. If d2 = 0 then u2

1,2 + v2
1,2 = 0, which yields

u1,2 = v1,2 = 0. Finally, if d∞ = 0 then the minimum of u1,2 and v1,2. Since the numbers in
question are nonnegative, this can only happen if u1,2 = v1,2 = 0.

By the preceding paragraph, we need only show that each of the dp satsifies the Triangle
Inequality. Each case must be treated separately.

d1(z1, z3) = u1,3 + v1,3 ≤ (u1,2 + u1,3) + (v1,2 + v1,3) =

(u1,2 + v1,2) + (u1,3 + v1,3) = d1(z1, z2) + d1(z2, z3)

For the d2 metric it is more convenient to compare the squares of the various expressions, using
the strictly increasing nature of the square root function for nonnegative real numbers. We have

d2(z1, z3)
2 = u2

1,3 + v2
1,3 ≤ (u1,2 + u2,3)

2 + (v1,2 + v2,3)
2 =

u2
1,2 + u2

2,3 + v2
1,2 + v2

2,3 + 2(u1,2 u2,3 + v1,2 v2,3)

and if we define vectors in R2 by α = (u1,2, v1,2) and β = (u2,3, v2,3) respectively, then the right
hand side is equal to |α + β|2, where | · · · | denotes the length of a vector (in the Euclidean sense).
Standard results on dot products imply that |α+β|2 ≤ (|alpha|+ |β|)2, and the Triangle Inequality
follows from this and the identities

|α| =
√

u2
1,2 + v2

1,2 , |β| =
√

u2
2,3 + v2

2,3 .

This proves the Triangle Inequality for the d2 construction. — Finally, we need to verify that d∞

satisfies the Triangle Inequality. As in the discussion for d2, the Triangle Inequalities for the metrics
on X and Y imply that

max {u1,3, v1,3} ≤ max {u1,2 + u2,3, v1,2 + v1,3

and the right hand side is less than or equal to max {u1,2, v1,2}+max {u2,3, v2,3}. The latter proves
the Triangle Inequality for the d∞ construction.

Note. In fact, there is a continuous family of product metrics dp on X×Y , where 1 ≤ p < ∞
defined by the formula

dp(z1, z2) = ( d(x1, x2)
p + d(u1, y2)

p )
1/p
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(with the same notation as in part (b) of the exercise) which generalizes the metrics d1 and d2 and
also satisfies the conditions

p < q ⇒ dq ≤ dp , lim
p→∞

dp = d∞ .

There are further details regarding these constructions and proofs of the assertions about them in
the files product-metrics.pdf, product-metrics2.pdf and product-metrics3.pdf.

5.18. There are plenty of counterexamples for which both x 6= y and r 6= s. In particular, if
X is a bounded metric space with diameter ∆ and X contains two points x and y, then N∆(x) =
N2∆(y). Of course, the simplest example is {x, y} where d(x, y) = 1, in which case ∆ = 1.

Additional exercise(s)

1. Since Nδ(x) ⊂ U for all x we have ∪x∈U Nδ(x) ⊂ U . To prove the reverse inclusion note
that

U =
⋃

x∈U

{x} ⊂
⋃

x∈U

Nδ(x) ⊂ U .

2. Since X is finite the set D of all real numbers of the form d(u, v), where u and v run
through all distinct pairs of points in X, is also finite, and therefore D has a positive minimum
element m. Therefore, if x ∈ X then the open set Nm/2(x) only contains the point x itself, and
consequently every one point subset of X is open. Since every subset in X is a union of one point
subsets and a union of open sets is open, it follows that every subset of X is open.

3. If f is an open mapping with U open in X and x ∈ U , we can take Wx = U . Conversely,
suppose that the condition in the exercise is satisfied; we need to prove that if U is open in X, then
f [U ] is open in Y . Given U ⊂ X open and x ∈ X, let some open set Wx in X such that Wx ⊂ U
be an open ubset with x ∈ X and such that f [Wx] is open in Y . As in the preceding exercise we
have ∪x∈U Wx = U , and therefore

f [U ] =
⋃

x∈U

f [Wx]

and since the sets f [Wx] are all open in Y it follows that f [U ] is also open in Y .

4. By Proposition 3.20 in Sutherland, we have f [V ] = h−1[V ], and since f is the inverse
function to h we also have h[W ] = f−1[W ].

If h is open, then the identity in the preceding sentence implies that h[W ] is open in X if W
is open in Y , and therefore f is continuous. Conversely, if f is continuous, then h[W ] = f −1[W ]
implies that h[W ] is open in X if W is open in Y , and therefore h is an open mapping.

5. Suppose first that we have a space with the standard discrete metric. If x = y, then
d(x, y) = 0 ≤ max {d(x, z), d(y, z)} because the two numbers on the right hand side are nonnega-
tive; on the other hand, if x 6= y, then d(x, y) = 1 and either x 6= z or y 6= z. No matter which of the
latter holds we have max {d(x, z), d(y, z)} = 1, and hence the defining condition for an ultra-metric
space is satisfied.

On the other hand, the real line is NOT an ultra-metric space. One easy counterexample is
given by x = 0, z = 1

2 and y = 1, in which case d(x, y) = 1 but max {d(x, z), d(y, z)} = 1
2 .
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NOTE. Example 5.11 on page 44 of Sutherland is a less trivial example of an ultra-metric
space, and in fact the verification of the ultrametric inequality d(m, q) ≤ max {d(m,n), d(n, q)} is
a key step in the derivation of the Triangle Inequality for this example.

6. (i) Let c = 1
2 and set A1 and A2 be the closed intervals [0, c] and [c, 1] respectively. If we

set
g1(t) = 1

2
t , g2(t) = 1

2
t + 1

2

then these maps satisfy the condition in the definition with r = 1
2 .

(ii) Take A1 to be the piece of the Cantor set which lies in the interval [0, 1
3 ], and take A2 to

be the piece of the Cantor set which lies in the interval [ 2
3 , 1]. The maps g1 and g− 2 are the linear

functions
g1(t) = 1

3 t , g2(t) = 1
3 t + 2

3

then these maps satisfy the condition in the definition with r = 1
3
. To be completely rigorous, it

would be necessary to verify that each of these is 1–1 onto the appropriate piece of the Cantor set,
but the problem does not require that this step be completed (it turns out to be straightforward
but somewhat messy).

(iii) The hypotheses imply that A is a union of finitely many subsets A1, · · · , Am such that
for each k = 1, ...,m there is a 1–1 correspondence gk : A → Ak which multiplies distances by a
factor of r, and furthermore B is a union of finitely many subsets B1, · · · , Bq such that for each
k = 1, ...,m there is a 1–1 correspondence hj : B → Bj which multiplies distances by a factor of r.
It follows that C = A × B is a union of the sets Ak × Bj ; furthermore, if ϕk,j is the map gk × hj ,
we need to verify that ϕk,j multiplies distances by a factor of r. — This will follow from the chain
of equations

d2

(

gk × hj(a, b), fk × gj(a
′, b′)

)

=
(

d
(

(gk(a), gk(a′)
)2

+ d
(

(hj(b), hj(b
′)
)2
)1/2

=

(

r2d(a, a′)2 + r2d(b, b′)2
)1/2

= r · d2

(

(a, b), (a′, b′)
)

.

Note that the number of pieces is mq.

(iv) Assume that A is bounded and let D be the set of distances between points of A. Since
f is 1–1 onto and multiplies distances by a factor of r, it follows that r · D is also the set of all
distances for D, so that D = r ·D. If the least upper bound of D is ∆, then the least upper bound
for r ·D is r ·∆, and therefore we have ∆ = r ·∆. Since A contains more than one point, it follows
that ∆ > 0 and therefore r · ∆ = ∆ implies r = 1.

(v) Take A = [0, 1] and f(t) = 1 − t. Then f is equal to its own inverse function, and
|f(u) − f(v)| = |v − u| by construction, so f multiplies distances by a factor of 1.

7. We need to verify that F is continuous at every point x ∈ R. Suppose first that x ∈ [a, b].
If ε > 0, let δ be such that t ∈ [a, b] and |t − x| < δ implies d(f(t), f(x)) < ε. If (x − δ, x + δ)
is completely contained in [a, b], then it follows that F is also continuous at x. Suppose now that
(x− δ, x+ δ) is NOT completely contained in [a, b], so that either a ∈ (x− δ, x] or b ∈ [x, x+ δ); it is
possible that both of the latter are true. In any case, if t ≤ a and t, a ∈ (x− δ, x] then F (t) = f(a)
and hence d(F (t), F (x)) = d(f(a), f(x)) < ε, while if t ≥ b and t, b ∈ [x, x + δ) then we have
d(F (t), F (x)) = d(f(b), f(x)) < ε. This shows that F is continuous at x ∈ [a, b] even if (x−δ, x+δ)
is not completely contained in [a, b].

Suppose now that x 6∈ [a, b] so that x < a or x > b; if x = a take δ = a− x, while if x > b take
δ = x − b. Then |t − x| < δ implies that (x − δ, x + δ) is contained in the complement of [a, b] and
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F is constant on (x − δ, x + δ), with F (x) = f(a) if x < a and F (x) = f(b) if x > b. Therefore in
these cases we also know that |t − x| < δ implies d(F (t), F (x)) = 0 < ε.

6. More concepts in metric spaces

Even-numbered exercises from Sutherland

6.2. (a) is closed because its complement is (−∞, 1), which is open.

(b) is not closed; we shall verify that is complement Q is not open. If x ∈ Q and ε > 0, then
Nε(x) = (x− ε, x + ε) contains irrational numbers by a previous exercise, so no such neighborhood
is entirely contained in Q.

(c) is not closed because

lim
n→∞

n

n + 1
= 1

and 1 does not belong to the subset, which means that the subset does not contain all its limit
points and therefore is not closed.

(d) is closed, for its complement is the union of the open intervals

(−∞, 0) , (2,∞) , (1, 2) , and

(

1

n + 1
,
1

n

)

where in the last case n runs through all the positive integers.

6.4. Suppose that Fα is closed in X for α ∈ A; we want to show that the complement of
the intersecton is open. But the latter is equal to

X −

(

⋂

α∈A

Fα

)

=
⋃

α∈A

X − Fα

and all of the sets in the expression on the right are open because the subsets Fα are all closed.
Therefore the complement of the intersection is a union of open sets and hence is open, so the
intersection itself must be closed.

6.6. One crucial point is to describe the complement correctly. It is the set of all functions
f such that f(a) 6= 0 for at least some choice(s) of a in A. So assume f lies in the complement of
the set in question, and choose a0 ∈ A such that f(a0) 6= 0. If g is a continuous function such that
|g − f | < 1

2
|f(a0)|, then g(a0) is also nonzero and hence g lies in the complementary subset, which

means that the latter must be open in the space of continuous functions with the uniform metric.

6.8. By Additional Exercise 6.1 the set of all y ∈ R2 satisfying |y| ≤ 1 is closed in R2, so
the closure of N1(0) is contained in this subset. We need to verify that every point y satisfying
|y| = 1 is a limit point of N1(0). But if we let cn = 1 − 1

n where n runs over all integers ≥ 2, then
it follows that cn · y ∈ N1(0) and cn · y −→ y as n → ∞.

6.10. Suppose that A is bounded and has diameter ∆. If x and y lie in the closure of A,
then there are sequences {an} and {bn} in A whose limits are x and y respectively (we have shown
this for limit points of A; if a ∈ A is not a limit point, take the sequence whose terms are all equal
to A).
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CLAIM: d(x, y) = limn→∞ d(an, bn). — Assuming this is true, we shall prove the assertions
in the exercise. The main thing to verify is that d(x, y) ≤ ∆; if this were not the case and
h = d(x, y) − ∆ > 0, then for some N we would have |d(xn, yn) − d(x, y)| < h for n ≥ N , and
the latter would imply d(xn, yn) > d(x, y) − h = ∆, contradicting the assumption that ∆ is the
diameter of A. Hence we do have d(x, y) ≤ ∆. By the definition of diameter this implies that the
diameter of A is at most ∆. On the other hand, since A ⊂ A we also know that ∆ ≤ diam A ,
and if we combine this with the previous observation we see that ∆ = diam A .

Proof of the limit formula. Given ε > 0 we can choose N so large that d(x, an) < 1
2ε and

d(y, bn) < 1
2ε provided n ≥ N . Therefore Exercise 5.2 in Sutherland implies that

|d(x, y) − d(an, bn)| ≤ d(x, an) + d(y, bn) <
ε

2
+

ε

2
= ε

and this proves the limit formula.

6.12. Let Ar(x) denote the set of all points y ∈ X such that d(x, y) ≤ r. Then Additional
Exercise 6.1 (see below) shows that Ar(x) is closed, and therefore we have

Nr(x) ⊂ Ar(x)

because the closure of a subset S is the smallest closed subset containing S. Following the hint, we
shall construct a counterexample involving discrete metric spaces. Specifically, suppose that X is
discrete and has more than one element. Then A1(x) = X strictly contains N1(x) = {x}, and the
latter is closed because X is discrete. Therefore the closure of N1(x) is strictly contained in A1(x)
for this example.

6.14. If we can prove the result when m = 2, then we can also prove it for all finite values
of m by an argument using mathematical induction, so we shall concentrate on the special case
m = 2.

Since the closure construction Clos satisfies A ⊂ B ⇒ Clos (A) ⊂ Clos (B), it follows that
Clos (A1) and Clos (A2) are contained in Clos (A1 ∪ A2), it follows that

Clos (A1) ∪ Clos (A2) ⊂ Clos (A1 ∪ A2) .

Conversely, since Clos (A1) ∪Clos (A2) is closed, it follows that

Clos (A1 ∪ A2) ⊂ Clos (A1) ∪ Clos (A2)

and the conclusion of the exercise follows from the two displayed inclusions.

6.16. (a) If x ∈ A , then x belongs to either A or L(A). In the first case 0 = d(x, x) implies
that d(x,A) = 0, and in the second case there is a sequence {an} in A such that limn→∞ an = x.
By the continuity of the distance function it follows that 0 = limn→∞ d(an, x), which means that
0 = d(x,A). Conversely, suppose that d(x,A) = 0 but x 6∈ A. Then for each positive integer n
there is some an ∈ A such that d(an, x) < 1

n
, which means that x ∈ L(A).

(b) If x, y ∈ X and a ∈ A, then d(x, a) ≤ d(x, y) + d(y, a). Since d(x,A) is the greatest lower
bound of the numbers d(x, a), it follows that d(x,A) ≤ d(x, y) + d(y, a). Therefore we also have
d(x,A)−d(x, y) ≤ d(y, a) for all a ∈ A, and since d(y,A) is the greatest lower bound of the numbers
d(y, a), it follows that d(x,A) − d(x, y) ≤ d(y,A).
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(c) If we interchange the roles of x and y in the previous sentence, we obtain a second inequality
d(y,A) − d(x, y) ≤ d(x,A). We can write this and the preceding inequality in the combined form
|d(x,A) − d(y,A)| ≤ d(x, y) and therefore d(x, y) < ε implies that |d(x,A) − d(y,A)| < ε, so that
h(x) = d(x,A) is uniformly continuous.

6.18. Let S be the finite subset of the metric space. We have seen in the lectures that
every for one point subset of S is equal to Nδ(x)∩S for some δ > 0 depending on x; it follows that
{x} = Nδ(x) ∩ S, so that (Nδ(x) − {x}) ∩ S = ∅. This means that x is not a limit point of S.

6.20. If f is continuous, then f−1 [IntB] is open and contained in f−1[B]. so we have

f−1 [IntB] ⊂ Int f−1[B] .

Conversely, suppose that the latter holds for every subset B. In particular, if U is an open set,
then we have

f−1[U ] ⊂ Int f−1[U ] f−1[U ]

which means that f−1[U ] is equal to its own interior and hence is open in X

6.22. If x ∈ Bdy (A), then every open neighborhood of x contains points of A and X − A,
so that d(x,A) and d(x,X − A) are both less than or equal to ε for each ε > 0. Therefore
d(x,A) = d(x,X −A) = 0. Conversely, if the latter holds then for every ε > 0 then there are points
in Nε(x) ∩ A and Nε(x) ∩ (X − A). By Proposition 6.24 this implies that x ∈ Bdy (A).

6.24. Let L be the limit of the sequence. Given ε > 0, choose N so that m,n ≥ N imply
d(ap, L) < 1

2 ε for p = m,n. By the Triangle Inequality we have d(am, an) < ε, which means that
the convergent sequence is a Cauchy sequence.

6.26. If a is a limit point of Y , then this result is true by the lemma on page 6.10 of the
file math145Anotes06.pdf. On the other hand, if a ∈ Y , then we can take the sequence such that
an = a for all n.

Additional exercise(s)

1. (i) Following the hint, we want to show that if z ∈ Nε(y), where d(y, x) > r and
ε = d(x, y) − r , then d(z, x) > r. This follows because d(z, x) ≥ d(y, x) − d(z, y), d(y, x) > r and
d(z, y) < d(x, y) − r imply that

d(z, x) > d(x, y) −
(

d(x, y) − r
)

= r .

(ii) The complement of the set in question is the set {y | d(x, y) > r}, and the conclusion
follows because the latter is open and the complement of an open set is closed.

2. Let L(A;B) be the set of all limit points for A which lie in B. Then the characterization
of limit points in terms of limits of sequences in A (such that no term in the sequence equals
the limit), it follows that L(A) ∩ B = L(A;B). Therefore the closure of A in B is equal to
A ∪ L(A;B) = A ∪ (L(A,B) ∩ B). Since A ⊂ B, it follows that

Clos (A;B) = A ∪ L(A;B) = (A∩B) ∪ (L(A,B)∩B) = (A∪L(A)) ∩B = Clos (A)∩B

which is what we wanted to prove.
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3. For every x ∈ X we have

{x} =
⋂

n

N1/n(x)

so if an intersection of countable open subsets is always open, then every one point subset is open.
Since the union of open sets is open, it follows that every subset is open (and also every subset is
closed).

4. The map sending x to (x, b) is 1–1 and onto, and an explicit inverse function is given by
sending (x, b) to x. For p = 1, 2,∞ the definitions of the product metrics imply that

dX(x, x′) = dp

(

(x, b), (x′, b)
)

so that the map in the first sentence of this paragraph is an isometry.

The proof of the companion result follows by a few substitutions of variables in the preceding
argument: The map sending y to (a, y) is 1–1 and onto, and an explicit inverse function is given
by sending (a, y) to y. For p = 1, 2,∞ the definitions of the product metrics imply that

dY (y, y′) = dp

(

(a, y), (a, y′)
)

so that the map in the first sentence of this paragraph is an isometry.

5. (i) Suppose that X − {p} is dense in X. Then x must be a limit point of X, and hence
for each ε > 0 the open set Nε(x) contains points of X − {p}, and therefore {p} is not open in
X. Conversely, if X − {p} is not dense in X, then the closure of X − {p}, which is contained in
X = (X − {p}) ∪ {p}, must be X − {p} itself, and consequently this subset is closed. Therefore its
complement, which is {p}, must be open in X.

(ii) Since the closure of a subset is the union of the latter with its limit points, if D ⊂ X and
x ∈ X then for every ε > 0 there is some point y ∈ Nε(x)∩D. — If we apply this first to the dense
subset U , then this yields a point y ∈ Nε(x) ∩ U . Now choose δ > 0 such that Nδ(y) ⊂ Nε(x) ∩ U .
Since V is dense, it follows that there is some z ∈ Nδ(y) ∩ V ⊂ Nε(x) ∩ (U ∩ V ). But this implies
that U ∩ V is dense in X.

(iii) Let X = Q with the usual metric, and for each q ∈ Q let V (q) − Q − {q}. The family of
subsets {V (q)} is countable because the rationals are countable, each of these subsets open, and
each is dense because Nε(q) is nonempty, but the intersection of the family V (q) is empty and
therefore not dense in Q.

6. We shall first prove that the interior of H in Rn is empty. Suppose to the contrary that
there is some p ∈ H and some ε > 0 such that Nε(p) ⊂ H. Then by the definition of H we know
that F = 0 on Nε(p). However, we have

F (p + ta) = F (p) + t|a|2 = t|a|2

so p + ta 6∈ H for t 6= 0; since t < ε/|a| implies that p + ta ∈ Nε(p), we cannot have Nε(p) ⊂ H.
This contradiction implies that the interior of H is empty. Note also that H is closed because it is
the zero set of a continuous real valued function.

We shall now prove that Rn−H is dense in Rn. If this were not the case, then the complement
of the closure contains some open subset of the form Nr(q), and this open subset would have to be
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contained in H. Since H has an empty interior, this cannot happen, and therefore Rn − H must
be dense in Rn.

7. (i) By the cited exercise in Sutherland the map d(x,A) is a continuous function of x.
Therefore, for each positive integer n the set Wn of all x such that d(x,A) < 1

n
is open. If F is

closed in X, then we know that x ∈ F if and only if d(x, F ) = 0, and therefore we have

F =
⋂

n

Wn

so that F is a countable intersection of open subsets.

(ii) Given the open set U let F = X−U , which is closed in X. By (i) we know that F = ∪n Wn

where each Wn is open in X. Therefore we have

U = X − F = X −

(

⋂

n

Wn

)

=
⋃

n

X − Wn

where each of the sets X − Wn is closed in X.

8. If x ∈ Bdy (C ∩ Y, Y ), then for each ε > 0 the set Nε(x;Y ) contains points of C ∩ Y and
Y − (C ∩ Y ) by Proposition 6.24 in Sutherland. Since C ∩ Y ⊂ C and Y − (C ∩ Y ) ⊂ X −C, then
the same proposition implies that x ∈ Bdy (C,X).

To see that containment may be proper, let C = [0, 1] ⊂ x = R and let Y = [0, 2] ⊂ X = R.
Then Bdy (C ∩ Y, Y ) = {1} but Bdy (C,X) = {0, 1}.

Comment. When looking for counterexamples like the preceding one, it is usually extremely
worthwhile to draw some pictures and use them to find candidates for counterexamples.

9. We shall refer to solutions02w14.figures.pdf for motivation; the curves Ci, where
1 ≤ i ≤ 4, are defined in the statement of the problem.

Let E be the corner points of A:

E = {(a, g(a)) , (a, f(a)) , (b, g(b)) , (b, f(b))}

CLAIM: For 1 ≤ i ≤ 4 every point of Ci −E is a limit point for each of the sets A, R2 −A, V and
R

2 − V .

The set C1 − E. — Suppose that a < x < b, so that (x, g(x)) ∈ C1 − E, and consider the
sequences {pn} and {qn} defined by

pn =
(

x, g(x) − 1
n

)

and qn =
(

x, g(x) + 1
n

)

respectively. Then we have

lim
n→∞

pn = (x, g(x)) = lim
n→∞

qn

and qn ∈ R2 − A ⊂ R2 − V for all n, so that (x, g(x)) is a limit point of both R2 − A and R2 − V .
To show that (x, g(x)) is a limit point of both A and V , it will suffice to show that pn ∈ V ⊂ A if
n is sufficiently large. The latter follows because pn < f(x) if 1

n < f(x) − g(x).

11



The set C3 − E. — Suppose that a < x < b, so that (x, f(x)) ∈ C3 − E, and consider the
sequences {pn} and {qn} defined by

pn =
(

x, f(x) − 1
n

)

and qn =
(

x, f(x) + 1
n

)

respectively. Then we have

lim
n→∞

pn = (x, f(x)) = lim
n→∞

qn

and qn ∈ R2 − A ⊂ R2 − V for all n, so that (x, f(x)) is a limit point of both R2 − A and R2 − V .
To show that (x, f(x)) is a limit point of both A and V , it will suffice to show that pn ∈ V ⊂ A if
n is sufficiently large. The latter follows because pn > g(x) if 1

n < f(x) − g(x).

The set C2 − E. — This set is empty if g(b) = f(b), so suppose that g(b) < f(b) and
g(b) < y < f(b), which means that (b, y) ∈ C2 − E. Consider the sequences {pn} and {qn} defined
by

pn =
(

b − 1
n , y

)

and qn =
(

b + 1
n , y

)

respectively. Then we have
lim

n→∞

pn = (b, y) = lim
n→∞

qn

and qn ∈ R2 − A ⊂ R2 − V for all n, so that (b, y) is a limit point of both R2 − A and R2 − V .
To show that (b, y) is a limit point of both A and V , it will suffice to show that pn ∈ V if n is
sufficiently large. To prove this, note that by the continuity of f and g we can find some δ > 0
such that b − x < δ implies

|f(x) − f(b)| < f(b) − y and |g(x) − g(b)| < y − g(b) .

Therefore if we choose N such that 1/N < δ, then

g
(

b − 1
n

)

y f
(

b − 1
n

)

so that (b, y) ∈ V ⊂ A.

The set C4 − E. — This set is empty if g(a) = f(a), so suppose that g(a) < f(a) and
g(a) < y < f(a), which means that (a, y) ∈ C4 −E. Consider the sequences {pn} and {qn} defined
by

pn =
(

a − 1
n
, y
)

and qn =
(

a + 1
n
, y
)

respectively. Then we have
lim

n→∞

pn = (a, y) = lim
n→∞

qn

and pn ∈ R2 − A ⊂ R2 − V for all n, so that (a, y) is a limit point of both R2 − A and R2 − V .
To show that (a, y) is a limit point of both A and V , it will suffice to show that pn ∈ V if n is
sufficiently large. To prove this, note that by the continuity of f and g we can find some δ > 0
such that x − a < δ implies

|f(x) − f(a)| < f(a) − y and |g(a) − g(b)| < y − g(a) .

Therefore if we choose N such that 1/N < δ, then

g
(

a + 1
n

)

< y < f
(

a + 1
n

)
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so that (a, y) ∈ V ⊂ A.

This completes the verification of the claim, which is the main step in our solution for this
exercise.

To simplify notation write C = C1∪C2∪C3∪C4. By the preceding claim we know that C−E
is contained in the sets L(A)∩L(R2−A) and L(V )∩L(R2−V ), and hence these sets are contained
about Bdy (A) and Bdy (V ) respectively.

We want to show that all of C is contained in these sets; in other words, we want to show that
points of E are also limit points of A, R2 − A, V and R2 − V . By definition, the set of boundary
points for a subset S is S − Int (S), so it is an intersection of two closed sets and accordingly is
closed in X. Let n be so large that that

a < a + 1
n < b − 1

n < b .

Then for n sufficiently large we know that C − E contains the sequences with terms

(

a + 1
n , g(a + 1

n )
)

,
(

a + 1
n , f(a + 1

n )
)

,
(

b − 1
n , g(b − 1

n )
)

,
(

b − 1
n , f(b − 1

n )
)

and by the continuity of f and g the limit of these sequences are equal to

(a, g(a)) , (a, f(a)) , (b, g(b)) , and (b, f(b))

respectively, so that E is contained in the set of limit points of C − E. Since sets of boundary
points are closed it follows that E is contained in the sets L(A)∩L(R2−A) and L(V )∩L(R2−V ).
Therefore C = (C − E) ∪ E is contained in these two sets, so that C is contained in Bdy (A) and
Bdy (V ).

To complete the argument we need to check that (a) the boundaries do not contain anything
else, (b) the closure of U is A, (c) the interior of A is U .

By construction we have A = V ∪ C, where A is closed, V is open, C ∩ V = ∅, and C ⊂
L(A) ∩ L(V ). The first and last parts of the preceding sentence imply that A ⊂ V ; since A is
closed, we also have V ⊂ A, and therefore these two sets are equal. To prove (b), note that V ⊂ A
implies that V ⊂ Int (A); on the other hand, the claim implies that C ∩ Int (A) = ∅, and therefore
we must have V = Int (A). We can now apply the preceding identity Bdy (S) = S − Int (S) to
conclude that Bdy (A) = Bdy (V ) = C.
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