SOLUTIONS TO EXERCISES FOR MATHEMATICS 145A — Part 4

Winter 2014
9. Some concepts in topological spaces

Exercises from Sutherland

```
See the next three pages.
```


Solutions to Chapter 9 exercises

9.1 The complement of any subset V of a discrete space X is open in X, so V is closed in X.
9.2 In order to be open in X, a subset either has to be empty or to have finite complement in X. So the subsets of X which are closed in X are X itself and any finite subset of X.
9.3 We may choose for example $U=(0,1) \cup(2,4), V=(1,3)$. Then

$$
U \cap \bar{V}=(2,3], \quad \bar{U} \cap V=[2,3), \quad \bar{U} \cap \bar{V}=\{1\} \cup[2,3], \quad \overline{U \cap V}=\emptyset
$$

9.4(a) Using Exercise 9.2, we see that any finite subset A of X is closed in X and hence is its own closure.
(b) Again using Exercise 9.2 we see that when A is infinite, the smallest closed set containing A is X. Hence $\bar{A}=X$ (by Proposition 9.10 (f)).
9.5 (a) This is false in general. For a counterexample, let X be the space $\{0,1\}$ with the discrete topology, let Y be the space $\{0,1\}$ with the indiscrete topology, and let f be the identity function. Then f is continuous for example by Exercise 8.1, (c) or (d). Also, $A=\{0\}$ is closed in X but $f(A)=A$ is not closed in Y. (The same counterexample would work for any set with at least two points in it.)
(b) Again this is false: we have seen a counterexample in Exercise 9.3 - take $A=(0,1) \cup(2,4)$ and $B=(1,3)$ in \mathbb{R}, and we have $A \cap \bar{B}=(2,3]$ while $\overline{A \cap B}=\emptyset$.
(c) This is false too. Let f be as in the counterexample for (a) and let $B=\{0\}$. Then $\bar{B}=\{0,1\}$ so $f^{-1}(\bar{B})=\{0,1\}$ but $f^{-1}(B)=\{0\}$ so $\overline{f^{-1}(B)}=\{0\}$.
9.6 (a) For each $j=1,2, \ldots, m$ we have $A_{j} \subseteq \bigcup_{i=1}^{m} A_{i}$ so $\overline{A_{j}} \subseteq \bigcup_{i=1}^{m} A_{i}$. Hence $\bigcup_{i=1}^{m} \overline{A_{i}} \subseteq \bigcup_{i=1}^{m} A_{i}$.

Conversely, since each A_{i} is closed in X and a finite union of closed sets is closed, $\bigcup_{i=1}^{m} \overline{A_{i}}$ is closed in X. Also, since $A_{i} \subseteq \overline{A_{i}}$, we have $\bigcup_{i=1}^{m} A_{i} \subseteq \bigcup_{i=1}^{m} \overline{A_{i}}$. So the latter is a closed subset of X containing $\bigcup_{i=1}^{m} A_{i}$ and by Proposition 9.10 (f) it contains $\bigcup_{i=1}^{m} A_{i}$. Hence $\bigcup_{i=1}^{m} \overline{A_{i}}=\bigcup_{i=1}^{m} A_{i}$.
(b) The right-hand side is an intersection of sets closed in X, hence is closed in X. It also contains $\bigcap_{i \in I} A_{i}$ since $A_{i} \subseteq \overline{A_{i}}$ for each $i \in I$. The required result follows by Proposition 9.10 (f).
9.7 Suppose first that $f: X \rightarrow Y$ is continuous and that $A \subseteq X$. Let $y \in f(\bar{A})$, say $y=f(x)$ where $x \in \bar{A}$. Let U be any open subset of Y containing y. Then $f^{-1}(U)$ is open in X and $x \in f^{-1}(U)$. Hence there exists $a \in A \cap f^{-1}(U)$, and $f(a) \in U$. Hence $y \in \overline{f(A)}$. This shows that $f(\bar{A}) \subseteq \overline{f(A)}$.

Conversely suppose that $f(\bar{A}) \subseteq \overline{f(A)}$ for any subset $A \subseteq X$. In particular we apply this with $A=f^{-1}(V)$ where V is closed in Y. Then $f\left(\overline{f^{-1}(V)} \subseteq \overline{f\left(f^{-1}(V)\right.} \subseteq \bar{V}=V\right.$. Hence $\overline{f^{-1}(V)} \subseteq f^{-1}(V)$. Since always $f^{-1}(V) \subseteq \overline{f^{-1}(V)}$, we have $\overline{f^{-1}(V)}=f^{-1}(V)$ hence by Proposition $9.10(\mathrm{c}) f^{-1}(V)$ is closed in X, showing that f is continuous.
9.8 (a) When A is finite, the only open set contained in A is \emptyset, so $\AA=\emptyset$. In this case, as we saw in Exercise 9.4, $\bar{A}=A$. Hence $\partial A=A$.
(b) Suppose that A is infinite. We distinguish two cases.

Case (1) If $X \backslash A$ is finite then A is open in X so $\AA=A$.
Case (2) If $X \backslash A$ is infinite, then $X \backslash B$ is infinite for any subset B of A, so \emptyset is the only subset of A which is open in X. Hence in this case $\AA=\emptyset$.
Since (see Exercise 9.4) $\bar{A}=X$ when A is infinite, in Case (1) $\partial A=X \backslash A$ while in Case (2) $\partial A=X$.
9.9 (a) If $a \in \AA$ then by definition there is some open set U of X such that $a \in U \subseteq A$. In particular then $a \in A$. So $\AA \subseteq A$.
(b) if $A \subseteq B$ and $x \in \AA$ then by definition there is some open subset U of X such that $a \in U \subseteq A$. Since $A \subseteq B$ then also $U \subseteq B$, so $a \in \stackrel{\circ}{B}$. This proves that $\AA \subseteq \circ^{\circ}$.
(c) If A is open in X then for every $a \in A$ there is an open set U (namely $U=A$) such that $a \in U \subseteq A$, so $a \in \AA$. This shows $A \subseteq \AA$, and together with (a) we get $\AA=A$.

Conversely if $\AA=A$ then for every $a \in A$ there exists a set open in X, call it U_{a}, such that $a \in U_{a} \subseteq A$. It is straightforward to check that $A=\bigcup_{a \in A} U_{a}$ which is a union of sets open in X, so is open in X.
(d) by (a), the interior of \AA is contained in \AA. Conversely suppose that $a \in \AA$. Then there exists a subset U open in X such that $a \in U \subseteq A$. Now for any point $x \in U$ we have $x \in U \subseteq A$, so also $x \in \AA$. This shows that $a \in U \subseteq \AA$, so a is in the interior of \AA. These together show that the interior of \AA is \AA.
(e) This follows from (c) and (d).
(f) We know that \AA is open in X from (e). Suppose that B is open in X and that $B \subseteq A$. By (b) then $\stackrel{\circ}{B}^{\circ} \subseteq \AA$. Since B is open we have ${ }^{\circ} B=B$ by (c). So $B \subseteq \AA$, which says that \AA is the largest open subset of X contained in A.
9.10 Suppose first that $f: X \rightarrow Y$ is continuous, and let $B \subseteq Y$. Since ${ }^{\circ} B$ is open in Y, by continuity $f^{-1}(\stackrel{\circ}{B})$ is open in X, so since also $f^{-1}(\stackrel{\circ}{B}) \subseteq f^{-1}(B)$ we have that $f^{-1}\left({ }^{\circ}\right)$ is contained in the interior of $f^{-1}(B)$.

Conversely suppose that for every subset $B \subseteq Y$ we have $f^{-1}(\stackrel{\circ}{B})$ is contained in the interior of $f^{-1}(B)$. We apply this with B open in Y, when $\stackrel{\circ}{B}=B$ so we get that $f^{-1}(B)$ is contained in the interior of $f^{-1}(B)$, which says that $f^{-1}(B)$ is open in X. Hence f is continuous.
9.11 Since $A_{i}^{\circ} \subseteq A_{i}$ we get $\bigcap_{i=1}^{m} A_{i}^{\circ} \subseteq \bigcap_{i=1}^{m} A_{i}$. Also, $\bigcap_{i=1}^{m} A_{i}^{\circ}$ is the intersection of a finite family of open sets, so is open in X, hence it is contained in the interior of $\bigcap_{i=1}^{m} A_{i}$. Conversely, $\bigcap_{i=1}^{m} A_{i} \subseteq A_{j}$ for each $j \in\{1,2, \ldots, m\}$; it follows that the interior of $\bigcap_{i=1}^{m} A_{i}$ is contained in A_{j}° for each $j \in\{1,2, \ldots, m\}$ so the interior of $\bigcap_{i=1}^{m} A_{i}$ is contained in $\bigcap_{i=1}^{m} A_{i}^{\circ}$. This proves the result.
9.12 This follows since $\bigcup_{i \in I} A_{i}^{\circ}$ is open and contained in $\bigcup_{i=1}^{m} A_{i}$.

An example: take $X=\mathbb{R}, A_{1}=(0,1), A_{2}=[1,2)$. Then $A_{1}^{\circ} \cup A_{2}^{\circ}=(0,1) \cup(1,2)$ while the interior of $A_{1} \cup A_{2}$ is $(0,2)$.
9.13 This follows from the fact that $\partial A=\bar{A} \cap \overline{X \backslash A}$ (Proposition 9.20) since each of $\bar{A}, \overline{X \backslash A}$ is closed in X hence so is their intersection.
9.14 (a) If A is closed in X then $\bar{A}=A$, so $\partial A=\bar{A} \backslash \AA \subseteq A$.

By definition $\partial A=\bar{A} \backslash \AA$ so in general $\bar{A}=\AA \cup \partial A$. So if $\partial A \subseteq A$ then both ∂A and \AA are subsets of A so $\bar{A} \subseteq A$ and A is closed in X.
9.14 (b) Suppose that $\partial A=\emptyset$. This says that $\AA=\bar{A}$, and since always $\AA \subseteq A \subseteq \bar{A}$ we get $A=\AA$ and $A=\bar{A}$. From the first of these A is open and from the second A is closed in X.
Conversely if A is both open and closed in X then $A=\AA$ and $A=\bar{A}$. Hence $\partial A=\bar{A} \backslash \AA=\emptyset$.
9.15 Since $\partial A=\bar{A} \backslash \AA$, certainly $\partial A \cap \AA=\emptyset$. By the definition $\partial A=\bar{A} \backslash \AA$ we know that $\partial A \subseteq \bar{A}$, and $\AA \subseteq A \subseteq \bar{A}$. So the disjoint union $\partial A \sqcup \AA \subseteq \bar{A}$. Conversely since $\partial A=\bar{A} \backslash \AA$, we have $\bar{A} \subseteq \AA \sqcup \partial A$. These two together show that $\bar{A}=\AA \sqcup \partial A$.
Now if $B \subset X$ and $B \cap A \neq \emptyset$ then $B \cap \bar{A} \neq \emptyset$ so either $B \cap \AA \neq \emptyset$ or $B \cap \partial A \neq \emptyset$.
9.16 First $\AA \cap(X \backslash A)=\emptyset$ since $\AA \subseteq A$ and $(X \backslash A) \subseteq X \backslash A$. Exercise 9.15 shows that $\AA \cap \partial A=\emptyset$. Since $\partial A=\partial(X \backslash A)$ by Corollary $9.21, \partial A \cap(X \backslash A)=\partial(X \backslash A) \cap(X \backslash A)=\emptyset$. Thus the three sets are pairwise disjoint. To see that their union is X, we use Exercise 9.15 and the fact that $\partial A=\partial(X \backslash A)$ (Corollary 9.21):
$\AA \cup \partial A \cup(X \backslash A)=\AA \cup \partial A \cup \partial A \cup(X \backslash A)=\AA \cup \partial A \cup \partial(X \backslash A) \cup(X \backslash A)=\bar{A} \cup \overline{X \backslash A}=X$.

Additional exercise(s)

1. If f is continuous, then for each open set in the family \mathcal{V} the inverse image $f^{-1}[V]$ is automatically open.

Conversely, since \mathcal{V} generates the topology on Y, every open subset W in Y is a union of finite intersections as below, where each $V_{\alpha, j} \in \mathcal{V}$:

$$
W=\bigcup_{\alpha}\left(V_{\alpha, 1} \cap \cdots V_{\alpha, k(\alpha)}\right)
$$

Since the inverse image construction sends unions to unions and intersections to intersections, we have

$$
f^{-1}[W]=\bigcup_{\alpha}\left(f^{-1}\left[V_{\alpha, 1}\right] \cap \cdots f^{-1}\left[V_{\alpha, k(\alpha)}\right]\right)
$$

and this is open because we assumed each set $f^{-1}\left[V_{\alpha, j}\right]$ is open..
2. No points with $|v|<1$ can lie in the boundary of either set because such points are in the interiors of both D^{2} and $N_{1}(0)$, and not points with $|v|>1$ can lie in the boundary of either set because such points are in the interiors of both $\mathbb{R}^{2}-D^{2}$ and $\mathbb{R}^{2}-N_{1}(0)$, Thus a boundary point for either set must lie on the unit circle S^{1}.

By the preceding observations, it will suffice to show that if $v \in S^{1}$ then there are sequences $\left\{a_{n}\right\}$ in $\mathbb{R}^{2}-D^{2}$ and $\left\{b_{n}\right\}$ in $N_{1}(0)$ whose limits are equal to v. We can do this very easily by taking $a_{n}=\left(1+\frac{1}{n}\right) \cdot v$ and $b_{n}=\left(1-\frac{1}{n}\right) \cdot v$.
3. The two displayed sets in the exercise are open, for if $H(x, y)=y-f(x)$, then H is continuous and the sets in question are the inverse images of $(-\infty, 0)$ and $(0, \infty)$ respectively. If we denote these inverse images by W_{-}and W_{+}respectively, then \mathbb{R}^{2} is the union of the pairwise disjoint subsets W_{-}, Γ_{f} and W_{+}.

Clearly the closures of the open sets W_{-}and W_{+}are contained in $W_{-} \cup \Gamma_{f}$ and $W_{+} \cup \Gamma_{f}$ respectively, so it follows that the boundaries of the open sets W_{-}and W_{+}must be contained in Γ_{f}. To conclude the proof, we need to show that very point of the graph is a limit point of each open subset.

We can do this by the same sort of argument which was used in the preceding exercise. Specifically, the limits of the sequences in W_{-}and W_{+}given by $a_{n}=\left(x, f(x)-\frac{1}{n}\right)$ and $b_{n}=$ $\left(x, f(x)+\frac{1}{n}\right)$ are both equal to $(x, f(x))$.

10. Subspaces and product spaces

Exercises from Sutherland
See the next six pages.

Solutions to Chapter 10 exercises

10.1 The subspace topology \mathcal{T}_{A} consists of all sets $U \cap A$ where $U \in \mathcal{T}$. Hence $\mathcal{T}_{A}=\{\emptyset,\{a\}, A\}$.
10.2 (T1) Since $X, \emptyset \in \mathcal{T}$, the family \mathcal{T}_{A} contains $\emptyset \cap A=\emptyset$ and $X \cap A=A$.
(T2) Suppose that $V_{1}, V_{2} \in \mathcal{T}_{A}$. Then $V_{1}=A \cap U_{1}$ and $V_{2}=A \cap U_{2}$ for some $U_{1}, U_{2} \in \mathcal{T}$. Hence $V_{1} \cap V_{2}=\left(A \cap U_{1}\right) \cap\left(A \cap U_{2}\right)=A \cap\left(U_{1} \cap U_{2}\right)$. But $U_{1} \cap U_{2} \in \mathcal{T}$ since \mathcal{T} is a topology, so $V_{1} \cap V_{2} \in \mathcal{T}_{A}$.
(T3) Suppose that $V_{i} \in \mathcal{T}_{A}$ for all i in some indexing set I. Then for each $i \in I$ there exists some $U_{i} \in \mathcal{T}$ such that $V_{i}=A \cap U_{i}$. Then

$$
\bigcup_{i \in I} V_{i}=\bigcup_{i \in I} A \cap U_{i}=A \cap \bigcup_{i \in I} U_{i}
$$

and since \mathcal{T} is a topology, $\bigcup_{i \in I} U_{I}$ is in \mathcal{T}, so $\bigcup_{i \in I} V_{i}$ is in \mathcal{T}_{A}.
10.3 We have to show that the subspace topology \mathcal{T}_{A} on A is the same as the co-finite topology on A. First suppose $V \subseteq A$ is in the cofinite topology for A. Either $V=\emptyset$, and then $V=A \cap \emptyset \in \mathcal{T}_{A}$, or $A \backslash V$ is finite. In this latter case, let $U=(X \backslash A) \cup V$ Then $A \cap U=V$, and U is in the co-finite topology for X, since $X \backslash U=A \backslash V$ which is finite.

Conversely suppose that $V=A \cap U$ where U is in the co-finite topology \mathcal{T} for X. Then either $U=\emptyset$, so $A \cap U=\emptyset$, and V is in the co-finite topology for A, or $X \backslash U$ is finite, in which case $A \backslash V \subseteq X \backslash U$ is finite and again V is in the co-finite topology for A.
10.4 First we show that any subset $V \in \mathcal{T}_{A}$ is d_{A}-open. Suppose that $a \in V$. We want to show that there exists $\varepsilon>0$ with $B_{\varepsilon}^{d_{A}}(a) \subseteq V$. Now $V \in \mathcal{T}_{A}$ so $V=A \cap U$ for some U open in X. Then $a \in U$, and U is open in X (i.e. $U \in \mathcal{T}=\mathcal{T}_{d}$) so there exists $\varepsilon>0$ such that $B_{\varepsilon}^{d}(a) \subseteq U$. But $B_{\varepsilon}^{d_{A}}(a)=A \cap B_{\varepsilon}^{d}(a)^{\dagger}$, so $B_{\varepsilon}^{d_{A}}(a) \subseteq A \cap U=V$ as required.
Proof of \dagger. If $x \in B_{\varepsilon}^{d_{A}}(a)$ then $x \in A$ and $d(x, a)=d_{A}(x, a)<\varepsilon$ so $x \in A \cap B_{\varepsilon}(A)$. If $x \in A \cap B_{\varepsilon}(a)$ then $x \in A$ and $d_{A}(x, a)=d(x, a)<\varepsilon$, so $x \in B_{\varepsilon}^{d_{A}}(a)$. Together these show that $B_{\varepsilon}^{d_{A}}(a)=A \cap B_{\varepsilon}^{d}(a)$.

Conversely we wish to show that any d_{A}-open subset V of A is in \mathcal{T}_{A}. For each $a \in V$ there exists $\varepsilon_{a}>0$ with $B_{\varepsilon_{a}}^{d_{A}}(a) \subseteq V$. Let $U=\bigcup_{a \in A} B_{\varepsilon_{a}}^{d}(a)$. Then U is open in X (as a union of open balls) and I claim that $V=A \cap U$. For

$$
A \cap U=A \cap \bigcup_{a \in V} B_{\varepsilon_{a}}^{d}(a)(a)=\bigcup_{a \in V} A \cap B_{\varepsilon_{a}}^{d}(a)=\bigcup_{a \in V} B_{\varepsilon_{a}}^{d_{A}}(a)=V
$$

where the last equality is straightforward to check. This shows that $V \in \mathcal{T}_{A}$ as required.
10.5 Since V is closed in X its complement $X \backslash V$ is open in X. Now $A \backslash(V \cap A)=A \cap(X \backslash V)$ by Exercise 2.2. So $A \backslash(V \cap A) \in \mathcal{T}_{A}$. This shows that $V \cap A$ is closed in $\left(A, \mathcal{T}_{A}\right)$.
10.6 (a) Suppose that $W \in \mathcal{T}_{A}$ and that $A \in \mathcal{T}$. Now $W=A \cap U$ for some $U \in \mathcal{T}$ since $W \in \mathcal{T}_{A}$. Then since also $A \in \mathcal{T}$ we have $W=A \cap U \in \mathcal{T}$ as required.
(b) We have $X \backslash A \in \mathcal{T}$ and $A \backslash W \in \mathcal{T}_{A}$ so $A \backslash W=U \cap A$ for some $U \in \mathcal{T}$. So

$$
X \backslash W=(X \backslash A) \cup(A \backslash W)=(X \backslash A) \cup(U \cap A)=(X \backslash A) \cup U
$$

where the last equality follows since $U=(U \cap A) \cup(U \cap(X \backslash A))$ and $U \cap(X \backslash A) \subseteq X \backslash A$. So $X \backslash W$ is open in X, as the union of open sets, so W is closed in X.
10.7(a) We use Proposition 3.13: for any subset $B \subseteq Y$ we have

$$
f^{-1}(B)=\bigcup_{i \in I}\left(f \mid U_{i}\right)^{-1}(B)
$$

Now let B be open in Y. For each $i \in I$, continuity of $f \mid U_{i}$ implies that $\left(f \mid U_{i}\right)^{-1}(B)$ is open in U_{i} and hence, by Exercise 10.6 (a), it is open in X. Hence $f^{-1}(B)$ is a union of sets open in X, so it is open in X and f is continuous as required.
(b) We again use Proposition 3.13: for any subset $B \subseteq Y$ we have

$$
f^{-1}(B)=\bigcup_{i=1}^{n}\left(f \mid V_{i}\right)^{-1}(B)
$$

Now suppose B is closed in Y. Then continuity of $f \mid V_{i}$ implies that $\left(f \mid V_{i}\right)^{-1}(B)$ is closed in V_{i} and hence, by Exercise $10.6(\mathrm{~b})$, it is closed in X. Hence $f^{-1}(B)$ is the union of a finite number of sets closed in X, so it is closed in X, and f is continuous as required.
10.8 First let V be any subset of A which is in \mathcal{T}_{A}. Then $V=A \cap U$ for some U open in X. Let $W=B \cap U$. Then W is in \mathcal{T}_{B}, and $V=A \cap U=B \cap(A \cap U)=A \cap(B \cap U)=A \cap W$. So V is in the topology on A induced by \mathcal{T}_{B}.

Conversely suppose that $V \subseteq A$ is in the topology on A induced by \mathcal{T}_{B}. Then $V=A \cap W$ for some $W \in \mathcal{T}_{B}$, and by definition of \mathcal{T}_{B} we know that $W=B \cap U$ for some $U \in \mathcal{T}$. Since $V=A \cap W=A \cap(B \cap U)=(A \cap B) \cap U=A \cap U$, it follows that $V \in \mathcal{T}_{A}$ as required.
10.9 (a) First suppose $x \in B_{1}$. Then $x \in X_{1}$, and also for any set W open in X_{1} with $x \in W$ we have $W \cap A \neq \emptyset$. Now let U be any set open in X_{2} with $x \in U$. Then $W=U \cap X_{1}$ is open in X_{1} and contains x, so $W \cap A \neq \emptyset$. Then $U \cap A=U \cap\left(A \cap X_{1}\right)=\left(U \cap X_{1}\right) \cap A=W \cap A \neq \emptyset$, so $x \in B_{2}$. Since also $x \in X_{1}$ this shows that $B_{1} \subseteq B_{2} \cap X_{1}$.

Conversely suppose that $x \in B_{2} \cap X_{1}$. Then $x \in X_{1}$ and for any subset U open in X_{2} with $x \in U$ we know $U \cap A \neq \emptyset$. Now let W be an open subset of X_{1} with $x \in W$. Then $W=X_{1} \cap U$ for some U open in X_{2} with $x \in U$. Hence $U \cap A \neq \emptyset$, so since $A \subseteq X_{1}$ we have $U \cap A=U \cap X_{1} \cap A=W \cap A$, so $W \cap A \neq \emptyset$, showing that $x \in B_{1}$.

Taking these two together we have $B_{1}=B_{2} \cap X_{1}$.
(b) If X_{1} is closed in X_{2} then B_{1}, being closed in X_{1}, is closed in X_{2} by Exercise 10.6 (b). Now B_{1} is a closed subset of X_{2} containing A and hence containing B_{2}. Since we already know from (a) above that $B_{1} \subseteq B_{2}$ we get $B_{1}=B_{2}$.
10.10 Let $f^{-1}: Y \rightarrow X$ be the (continuous) inverse function of f. Then $f^{-1} \mid B: B \rightarrow X$ is continuous, by Corollary 10.5. Since $f^{-1} \mid B$ maps B onto A, it defines a continuous function from B to A (by Proposition 10.6). In fact this function is inverse to the map $g: A \rightarrow B$ defined by f, and shows that g is a homeomorphism from A to B.

Since f is one-one onto Y, and $f(A)=B$, we have also that $f(X \backslash A)=Y \backslash B$, so f defines a one-one onto map $h: X \backslash A \rightarrow Y \backslash B$ which is a homeomorphism just as g is.
10.11 Any singleton set $\{(x, y)\}$ in $X \times Y$ is the product $\{x\} \times\{y\}$ of sets which are open in X, Y since they have the discrete topology, so $\{(x, y)\}$ is open in the product topology. Hence any subset of $X \times Y$ is open in the product topology, which is therefore discrete.
10.12 The open sets in \mathcal{S} are $\emptyset, \mathcal{S},\{1\}$, so a basis for the open sets in the product topology on $\mathcal{S} \times \mathcal{S}$ is $\{\{1\} \times\{1\},\{1\} \times \mathcal{S}, \mathcal{S} \times\{1\}, \mathcal{S} \times \mathcal{S}\}$. Thus the open sets in the product topology are:

$$
\emptyset,\{(1,1)\},\{(1,0),(1,1)\},\{(0,1),(1,1)\},\{(0,1),(1,0),(1,1)\}, \mathcal{S} \times \mathcal{S}
$$

10.13 Consider the case when Y is infinite, and X contains at least two points. Then we may let U be a non-empty open subset of X with $U \neq X$. Then the complement of $U \times Y$ is $(X \backslash U) \times Y$, which is infinite. But $U \times Y \neq X \times Y$. Hence $U \times Y$ is not open in the co-finite topology on $X \times Y$ although it is open in the product of the co-finite topologies on X and Y.
10.14 Since the product metrics on $X \times Y$ in Example 5.10 are all topologically equivalent, it is enough to prove this with $d=d_{\infty}$. To prove that \mathcal{T}_{d} coincides with the product topology of $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ it is enough to show that any set in a basis for one of these topologies is open in the other topology.

We use the basis for \mathcal{T}_{X} consisting of all open balls $B_{r}^{d_{X}}(x)$ and similarly for \mathcal{T}_{Y}, and we use the basis for \mathcal{T}_{d} the set of all open balls $B_{s}^{d}((x, y))$. We show first that any open ball in this basis for \mathcal{T}_{d} is open in the product topology of \mathcal{T}_{X} and \mathcal{T}_{Y}. This follows since $B_{s}^{d}((x, y))=B_{s}^{d_{X}}(x) \times B_{s}^{d_{Y}}(y)$: for $d\left(\left(x^{\prime}, y^{\prime}\right),(x, y)<s\right.$ iff both $d\left(x^{\prime}, x\right)<s$ and $d\left(y^{\prime}, y\right)<s$. But $B_{s}^{d_{X}}(x) \times B_{s}^{d_{Y}}(y)$ is a (basis) open set for the product of the topologies $\mathcal{T}_{X}, \mathcal{T}_{Y}$. So each $B_{s}^{d}((x, y))$ is open in the product topology of $\left(X, \mathcal{T}_{X}\right),\left(Y, \mathcal{T}_{Y}\right)$.

Conversely suppose $U \times V$ is any basis set in the product topology, and let $(x, y) \in U \times V$. Then U is open in X, so there exists $r>0$ such that $B_{r}^{d_{X}}(x) \subseteq U$. Similarly there exists $s>0$ such that $B_{s}^{d_{Y}}(y) \subseteq V$. Let $t=\min \{r, s\}$. Then $B_{t}^{d}((x, y)) \subseteq U \times V$, since if $d\left(\left(x^{\prime}, y^{\prime}\right),(x, y)<t\right.$ then both $d_{X}\left(x^{\prime}, x\right)<t \leqslant r$ and $d_{Y}\left(y^{\prime}, y\right)<t \leqslant s$, so $x^{\prime} \in U$ and $y^{\prime} \in V$.
10.15 (a) Any open subset W of $X \times Y$ is a union $\bigcup_{i \in I} U_{i} \times V_{i}$ for some indexing set I, where each U_{i} is open in X and each V_{i} is open in Y. We may as well assume that no V_{i} (and no U_{i}) is empty, since if it were then $U_{i} \times V_{i}$ would be empty, and hence does not contribute to the union. The point of this is that $p_{X}\left(U_{i} \times V_{i}\right)=U_{i}$ for all $i \in I$. Now

$$
p_{X}(W)=p_{X}\left(\bigcup_{i \in I} U_{i} \times V_{i}\right)=\bigcup_{i \in I} p_{X}\left(U_{i} \times V_{i}\right)=\bigcup_{i \in I} U_{i}
$$

which is open in X as a union of open sets. Similarly $p_{Y}(W)$ is open in Y.
(b) Consider the set $W=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x y=1\}$. This is closed in $\mathbb{R} \times \mathbb{R}$: a painless way to see this is to consider the function $m: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $m(x, y)=x y$. Then m is continuous (by Propositions 8.3 and 5.17) and $\{1\}$ is closed in \mathbb{R}, so $W=m^{-1}(1)$ is closed in $\mathbb{R} \times \mathbb{R}$ by Proposition 9.5. But $p_{1}(W)=\mathbb{R} \backslash\{0\}$ is not closed in \mathbb{R}.
10.16 For use in (ii) and (iii) we check that for any subsets V, W of sets X, Y we have

$$
\begin{equation*}
(X \times Y) \backslash(V \times W)=\{X \times(Y \backslash W)\} \cup\{(X \backslash V) \times Y\} \tag{*}
\end{equation*}
$$

For (x, y) is in the left-hand side iff either $y \notin W$ or $x \notin V$, and the same is true for the right-hand side.
(i) First suppose that (x, y) is in the interior of $A \times B$. Then there is some set W open in $X \times Y$ such that $(x, y) \in W \subseteq A \times B$. By definition of the product topology, there exist open subsets U of X and V of Y such that $(x, y) \in U \times V \subseteq W$. This shows that $x \in U \subseteq A$ and $y \in V \subseteq B$, so $x \in \AA$ 요 and $y \in \stackrel{\circ}{B}$, hence $(x, y) \in \AA \times \stackrel{\circ}{A}$. This shows that the interior of $A \times B$ is contained in $\AA \times \stackrel{\circ}{B}$.

Conversely suppose that $(x, y) \in \stackrel{\circ}{A} \times \stackrel{\circ}{B}$. Then there exist sets U, V open in X, Y respectively such that $x \in U \subseteq A$ and $y \in V \subseteq B$. Then $U \times V$ is open in $X \times Y$ and $(x, y) \in U \times V \subseteq A \times B$ so (x, y) is in the interior of $A \times B$. Hence $\AA \times{ }^{\circ}$. is contained in the interior of $A \times B$.

Together these show that the interior of $A \times B$ is $\AA \times{ }^{\circ}$.
(ii) By $\left(^{*}\right), X \times Y \backslash(\bar{A} \times \bar{B})=\{(X \backslash \bar{A}) \times Y\} \cup\{X \times(Y \backslash \bar{B})\}$, the union of two open sets which is open in $X \times Y$ so $\bar{A} \times \bar{B}$ is closed in $X \times Y$. Since also $A \times B \subset \bar{A} \times \bar{B}$ it follows from Proposition 9.10 (f) that $\overline{A \times B} \subseteq \bar{A} \times \bar{B}$.

Conversely suppose that $x \in \bar{A}$ and that $y \in \bar{B}$. Let W be any open subset of $X \times Y$ containing (x, y). Let U, V be open subsets of X, Y such that $(x, y) \in U \times V \subseteq W$. Since U contains a point $a \in A$ and V contains a point $b \in B$, it follows that W contains the point (a, b) of $A \times B$. Hence $(x, y) \in \overline{A \times B}$. This shows that $\bar{A} \times \bar{B} \subseteq \overline{A \times B}$.

Together these prove that $\overline{A \times B}=\bar{A} \times \bar{B}$.
(iii) This may be deduced from (i) and (ii). For using $\left(^{*}\right)$,
$\partial(A \times B)=\overline{A \times B} \backslash(A \stackrel{\circ}{\times})=\bar{A} \times \bar{B} \backslash(\AA \times \stackrel{\circ}{A})=((\bar{A} \backslash \AA) \times \bar{B}) \cup(\bar{A} \times(\bar{B} \backslash \stackrel{\circ}{B}))=(\partial A \times \bar{B}) \cup(\bar{A} \times \partial B)$.
10.17 First, t is continuous by Proposition 10.11 , since if p_{1}, p_{2} are the projections of $X \times X$ on the first, second factors, then $p_{1} \circ t=p_{2}$ and $p_{2} \circ t=p_{1}$, and p_{2}, p_{1} are both continuous. Now we observe that t is self-inverse, so it is a homeomorphism.
10.18 From Proposition 10.12, $f \times g$ is continuous. Since both f and g are 1-1 onto it is easy to see that $f \times g$ is 1-1 onto. The inverse of $f \times g$ is $f^{-1} \times g^{-1}$. Now f^{-1}, g^{-1} are both continuous since f, g are homeomorphisms, so $f^{-1} \times g^{-1}$ is continuous, again by Proposition 10.12. Hence $f \times g$ is a homeomorphism.
10.19 (a) The graph of f is a curve through $(0,1)$ which has the lines $x=-1, x=1$ as vertical asymptotes. We argue as in Proposition 10.18: let $\theta: X \rightarrow G_{f}$ be defined by $\theta(x)=(x, f(x)$ and let $\phi: G_{f} \rightarrow X$ be defined by $\phi(x, f(x))=x$. Then θ and ϕ are easily seen to be mutually inverse. Continuity of θ follows from Proposition 10.11 since $p_{1} \circ \theta$ is the identity map of X and $p_{2} \circ \theta$ is the continuous function f. Continuity of ϕ follows since ϕ is the restriction to G_{f} of the continuous projection $p_{1}: X \times \mathbb{R} \rightarrow X$. Hence θ is a homeomorphism (with inverse ϕ).
(b) The graph of f is not easy to draw, but it oscillates up and down with decreasing amplitude as x approaches 0 from the right. Continuity of $f:[0, \infty) \rightarrow \mathbb{R}$ on $(0, \infty)$ follows by continutiy of the sine function together with Propositions 8.3 and 5.17. Continuity (from the right) at 0 follows from Exercise 4.14. Now again arguing as in Proposition 10.18 we see that $x \mapsto(x, f(x))$ defines a homeomorphism from $[0, \infty)$ to G_{f}.
10.20 Suppose first that the topology on X is discrete. Then as we saw in Exercise 10.11 the topology on $X \times X$ is also discrete, so any subset, in particular Δ, is open in $X \times X$.

Conversely suppose that Δ is open in the topological product $X \times X$. Then for any $x \in X$, $(x, x) \in \Delta$ and Δ is open, so there exist open subsets U, V of X such that $(x, x) \in U \times V \subseteq \Delta$. Then $x \in U$, and $x \in V$. Moreover, if any other point $y \in U$ we would have $(y, x) \in U \times V \subseteq \Delta$. But $(y, x) \notin \Delta$ since $y \neq x$. So $U=\{x\}$, and this says $\{x\}$ is open in X. Hence X has the discrete topology.

Remove this page.

Additional exercise(s)

1. Let \bar{B} denote the closure of B in X. Since B is dense in A, the closure of B in A, which is $\bar{B} \cap A$ is equal to A, which means that $\bar{B} \supset A$. Since \bar{B} is a closed subset containing A, we then have $\bar{B} \supset \bar{B}=X$, and hence B is dense in X.■
2. Follow the hint. The set of points in \mathbb{R}^{2} such that $x y=1$ is the zero set of the continuous real valued function $f(x, y)=x y-1$ and hence is closed in \mathbb{R}^{2}, but its image under either coordinate projection $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is $\mathbb{R}-\{(0,0)\}$, which is not closed in \mathbb{R}.
3. The topologies $\mathcal{T}_{X} \mid A$ and $\mathcal{T}_{Y} \mid B$ consist (respectively) of all subsets of the form $U \cap A$ and $V \cap B$ where U is open in X and V is open in Y, so the product topology $\left(\mathcal{T}_{X} \mid A\right) \prod\left(\mathcal{T}_{Y}\right) \mid B$ is generated by all sets of the form $(U \cap A) \times(V \cap B)$ for such U and V.

Similarly, the subspace topology $\left(\mathcal{T}_{X} \prod \mathcal{T}_{Y}\right) \mid A \times B$ is generated by all sets of the form $(U \times V) \cap(A \times B)$, where U is open in X and V is open in Y.

Since $(U \times V) \cap(A \times B)=(U \cap A) \times(V \cap B)$ by Exercise 2.5 in Sutherland, we see that both topologies are generated by the same family of subsets, and therefore the two topologies must coincide.■
4. (i) Suppose that \mathcal{U} is a topology on Y such that $f:\left(X, \mathcal{T}_{X}\right) \rightarrow(Y, \mathcal{U})$ is continuous. Then $V \in \mathcal{U}$ implies that $f^{-1}[V] \in \mathcal{T}_{X}$, and therefore \mathcal{U} is contained in $f_{*} \mathcal{T}_{X}$. To complete the proof, it will suffice to show that the latter defines a topology on Y. Clearly \emptyset and Y belong to $f_{*} \mathcal{T}_{X}$ because their inverse images are the open sets \emptyset and X respectively. Suppose now that $V_{\alpha} \in f_{*} \mathcal{T}_{X}$ for all $\alpha \in A$. Then for each α we have $f^{-1}\left[V_{\alpha}\right] \in \mathcal{T}_{X}$, and since \mathcal{T}_{X} is a topology for X we know that

$$
f^{-1}\left[\bigcup_{\alpha \in A} V_{\alpha}\right]=\bigcup_{\alpha \in A} f^{-1}\left[V_{\alpha}\right]
$$

also belongs to \mathcal{T}_{X}, so that the union of the sets V_{α} belongs to $f_{*} \mathcal{T}_{X}$. Similarly, if V_{1} and V_{2} belong to $f_{*} \mathcal{T}_{X}$ we have $f^{-1}\left[V_{i}\right] \in \mathcal{T}_{X}$ for $i=1,2$, so that

$$
f^{-1}\left[V_{1} \cap V_{2}\right]=f^{-1}\left[V_{1}\right] \cap f^{-1}\left[V_{2}\right]
$$

also belongs to \mathcal{T}_{X} and hence $V_{1} \cap V_{2}$ belongs to $f_{*} \mathcal{T}_{X} . \boldsymbol{-}$
(ii) Suppose that \mathcal{U} is a topology on X such that $f:(X, \mathcal{U}) \rightarrow\left(Y, \mathcal{T}_{Y}\right)$ is continuous. Then $V \in \mathcal{T}_{Y}$ implies that $f^{-1}[V] \in \mathcal{U}$, and therefore \mathcal{U} containes $f^{*} \mathcal{T}_{Y}$. To complete the proof, it will suffice to show that the latter defines a topology on X. Clearly \emptyset and X belong to $f^{*} \mathcal{T}_{Y}$ because they are the inverse images of the open sets \emptyset and Y respectively. Suppose now that $V_{\alpha} \in f^{*} \mathcal{T}_{Y}$ for all $\alpha \in A$. Then for each α we have $V_{\alpha}=f^{-1}\left[U_{\alpha}\right]$ for some $U_{\alpha} \in \mathcal{T}_{Y}$, and since \mathcal{T}_{Y} is a topology for Y we know that

$$
f^{-1}\left[\bigcup_{\alpha \in A} U_{\alpha}\right]=\bigcup_{\alpha \in A} f^{-1}\left[U_{\alpha}\right]=\bigcup_{\alpha \in A} V_{\alpha}
$$

also belongs to $f^{*} \mathcal{T}_{Y}$. Similarly, if V_{1} and V_{2} belong to $f^{*} \mathcal{T}_{Y}$ and $V_{i}=f^{-1}\left[U_{i}\right]$ for $U_{i} \in \mathcal{T}_{X}$ and $i=1,2$, then

$$
f^{-1}\left[V_{1} \cap V_{2}\right]=f^{-1}\left[V_{1}\right] \cap f^{-1}\left[V_{2}\right]=U_{1} \cap U_{2}
$$

also belongs to \mathcal{T}_{Y} and hence $V_{1} \cap V_{2}$ belongs to $f^{*} \mathcal{T}_{Y}$.

