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Solutions to Chapter 13 exercises

13.1 Suppose that the space X has the indiscrete topology. Then the only open sets in X are

∅, X . So any open cover of X must contain the set X , and {X} is a finite subcover.

13.2 Let the space X have the discrete topology. First suppose that X is finite. Then there

are only a finite number of distinct subsets of X , so any open cover of X already is a finite

subcover of itself, provided the sets in the cover are distinct. Hence X is compact.

But if X is infinite then it has the open cover {{x} : x ∈ X} which clearly has no finite

subcover. So if X is compact it must be finite.

13.3 Suppose that U is an open cover of A ∪ B . Then in particular U is an open cover of A,

so there is a finite subfamily UA of U which covers A. Similarly there is a finite subfamily UB

of U which covers B . Then UA ∪ UB is a finite subcover of A ∪ B , and this proves that A ∪ B

is compact.

13.4 Throughout this question we use the characterization of compact subsets in Euclidean

spaces: C ⊆ R
n is compact iff it is bounded and closed in R

n .

(i) This set is not closed in R, hence not compact.

(ii) This set is not bounded so not compact.

(iii) This set is not closed in R hence not compact (for example 1/
√

2 is in its closure in R but

not in the set).

(iv) This set is bounded and closed in R
2 and hence compact. (It is clearly bounded. To see

that it is closed in R
2 we note that it is f−1(1) where f : R

2 → R is the continuous function

defined by f(x, y) = x2 + y2 .)

(v) This set is bounded and closed in R
2 and hence compact. (It is clearly bounded. To see

that it is closed in R
2 we note that it is f−1([0, 1]) where f : R

2 → R is the continuous function

defined by f(x, y) = |x| + |y|.)

(vi) This set in not closed in R
2 hence not compact. (For example the point (1, 0) is in its

closure but not in the set.)

(vii) This set is not bounded hence not compact. For given any n ∈ N the point (1/n, n) is in

the set.

13.5 Suppose that U is any open cover of (X, T ). Since T ⊆ T ′ , each set in U is in T ′ , hence

U is an open cover of (X, T ′) as well. But (X, T ′) is compact, so there is a finite subcover.

This proves that (X, T ) is compact.



13.6 First suppose that X is compact. Let {Vi : i ∈ I} be an indexed family with the property

that
⋂
j∈J

Vj is non-empty for every finite subset J ⊆ I (this is called the finite intersection

property). Suppose for a contradiction that
⋂
i∈I

Vi = ∅ . Then the family {X \ Vi : i ∈ I} is an

open cover for X , for each X \ Vi is open since Vi is closed, and

⋃
i∈I

(X \ Vi) = X \
⋂
i∈I

Vi = X \ ∅ = X.

Since X is compact, this open cover has a finite subcover, so there is some finite subset J ⊂ I

such that X \
⋂
j∈J

Vj =
⋃
j∈J

X \ Vj = X , so
⋂
j∈J

Vj = ∅ , which contradicts the finite intersection

property. Hence
⋂
i∈I

Vi �= ∅.

Conversely suppose that X has the property described in this exercise, and let {Ui : i ∈ I}
be an open cover of X . Write Vi = X \ Ui . Then each Vi is closed in X , and

⋂
i∈I

Vi =
⋂
i∈I

(X \ Ui) = X \
⋃
i∈I

Ui = X \ X = ∅,

so there must be some finite subset J ⊆ I such that
⋂
j∈J

Vj = ∅ . Then

⋃
j∈J

Uj =
⋃
j∈J

(X \ Vj) = X \
⋂
j∈J

Vj = X \ ∅ = X.

This says that {Uj : j ∈ J} is a finite subcover of {Ui : i ∈ I} . Hence X is compact.

13.7 This is immediate since any finite subset of a space is compact.

13.8 First suppose that X ⊂ R is unbounded. Let f : X → R be the inclusion function. Then

f is continuous and unbounded.

Secondly suppose that X ⊆ R is not closed in R. Let c ∈ X \ X , and define f : X → R by

f(x) = 1/(|x − c|). Then f is continuous, since for each x ∈ X we have |x − c| �= 0. But f is

not bounded, since |x − c| gets arbitrarily small so 1/(|x − c|) gets arbitrarily large: explicitly,

let ∆ ∈ R with ∆ > 0. Then 1/∆ > 0, so since c ∈ X there exists x ∈ X with |x − c| < 1/∆

and hence f(x) > ∆.

13.9 We proceed as in the previous exercise. Suppose first that X ⊆ R is unbounded. Define

f : X → R by f(x) = 1/(1 + |x|). Then the lower bound of f is 0. For f(x) > 0 for all x ∈ X ,

but for any δ > 0, there exists x ∈ X such that 1 + |x| > 1/δ , and then f(x) < δ . But f does

not attain its lower bound 0 since f(x) > 0 for all x ∈ X .

Secondly suppose that X ⊆ R is not closed. Let c ∈ X \ X . Define f : X → R by

f(x) = |x − c| . Then the lower bound of f is 0 since for any δ > 0 there exists x ∈ X with

|x − c| < δ . But this lower bound is not attained, since f(x) > 0 for all x ∈ X .



13.10 Since C and C ′ are compact subspaces of a Hausdorff space X they are closed in X (by

Proposition 13.12). Hence C ∩ C ′ is closed in X . But then C ∩ C ′ is also closed in C (by

Exercise 10.5), and since C is compact so is C ∩ C ′ (by Proposition 13.20).

13.11 This follows immediately from Exercise 13.6, since the family {Vn : n ∈ N} has the finite

intersection property - the intersection of any finite subfamily {Vn1, Vn2 , . . . , Vnr} is VN where

N = max{n1, n2, . . . , nr} , and VN is non-empty. Hence since X is compact, Exercise 13.6 tells

us that
∞⋂

n=1

Vn is non-empty.

13.12 As the hint suggests, we consider the sequence of sets Wn = Vn ∩ (X \ U). Since the Vn

are nested, so are the Wn . Also, each Wn is closed in X since Vn is closed in X and U is open

in X so X \ U is closed in X . Suppose for a contradiction that there is no integer n such that

Vn ⊆ U . Then each set Wn is non-empty, so by the previous question
∞⋂

n=1

Wn is non-empty. But

∞⋂
n=1

Wn =

( ∞⋂
n=1

Vn

)
∩ (X \ U) = V∞ ∩ (X \ U)

and this is empty since V∞ ⊆ U. This contradiction shows that Vn ⊆ U for some integer n.

13.13 (a) We show that the Xn form a nested sequence of closed subsets of X . Note that

X1 = f(X0) = f(X) ⊆ X0 . Suppose inductively that Xn ⊆ Xn−1 for some integer n � 1. Then

f(Xn) ⊆ f(Xn−1), which says Xn+1 ⊆ Xn . So by induction Xn ⊆ Xn−1 for all n ∈ N. Also,

since X is compact and f is continuous, X1 = f(X) is compact (by Proposition 13.15). Suppose

that Xn is compact for some integer n � 0. Then since f is continuous, Xn+1 = f(Xn) is also

compact (by Proposition 13.15). By induction, Xn is compact for all integers n � 0. But X is

Hausdorff, so each Xn is closed in X . Also, each Xn is non-empty by inductive construction.

Now by Exercise 13.11, A =
∞⋂

n=0

Xn is nonempty.

(b) The inclusion f(A) ⊆ A is straightforward: if a ∈ A then a ∈ Xn for any integer n � 0, so

f(a) ∈ f(Xn) = Xn+1 for every integer n � 0. But since X0 ⊇ X1 ⊇ . . . ⊇ Xn ⊇ . . . , we have
∞⋂

n=1

Xn =
∞⋂

n=0

Xn , and we see that f(a) ∈ A.

To prove the opposite inclusion we follow the hint, and for any a ∈ A we let Vn = f−1(a)∩Xn .

Since the Xn are nested. so are the Vn . Since X is Hausdorff, {a} is closed in A, hence since f

is continuous, f−1(a) is a closed subset of X by Proposition 9.5. Also, each Xn is closed in X as

above. So each Vn is closed in X . Moreover, for any integer n � 0,we know a ∈ Xn+1 = f(Xn)

so there exists x ∈ Xn such that f(x) = a. This says that Vn = f−1(a)∩Xn is non-empty. Now

by Exercise 13.11,

∞⋂
n=0

Vn is non-empty. Let b be a point in this set. Then b ∈ Vn = f−1(a)∩Xn

for all integers n � 0. Now b ∈ f−1(a) says that f(b) = a, and b ∈ Xn for all integers n � 0

says that b ∈
∞⋂

n=0

Xn = A. So A ⊆ f(A). We have now proved that f(A) = A.



13.14 Following the hint, define g : X → R by g(x) = d(f(x), x). So g is the composition

X →
∆

X × X −−→
f × 1

X × X →
d

R,

where ∆ is the diagonal map. Now ∆, f × 1 and d are continuous (by Propositions 10.13 and

10.12, and Exercise 5.17) so their composition g is continuous. Since X is compact, g attains

its lower bound, say c, on X , (by Corollary 13.18) and we must have c > 0 since for every

x ∈ X we are given f(x) �= x so d(f(x), x) > 0. Hence d(f(x), x) � c > 0 for all x ∈ X .

13.15 The exercise gives the procedure for constructing the sequences (an), (bn). The sequence

(an) converges to some real number c since it is monotonic increasing and bounded above (for

example by b1 ). Likewise, since (bn) is monotonic decreasing and bounded below (for example

by a1 ) it too converges to some real number d . Note that for any m � n we have an � am � bm ,

so in the limit as m → ∞ , an � d . This is true for all n ∈ N, so in the limit as n → ∞ , c � d .

Now for any n ∈ N we have an � c � d � bn. Since bn−an = (b−a)/2n , also d−c � (b−a)/2n .

This gives c = d . But c ∈ U for some U ∈ U , and U is open in R, so there exists ε > 0 such

that (c − ε, c + ε) ⊆ U. Hence for large enough n, the interval [an, bn] ⊆ U since c ∈ [an, bn]

and bn − an = (b − a)/2n . This contradicts the construction. So U must have a finite subcover

after all.

13.16 Lipschitz equivalent metrics d1, d2 on a set X satisfy hd2(x, y) � d1(x, y) � kd2(x, y)

for some positive constants h, k and all x, y ∈ X . Given ε > 0, let δ = hε . Then whenever

d1(x, y) < δ we have d2(x, y) � d1(x, y)/h < ε , for all x, y ∈ X . So the identity map of X is

uniformly (d1, d2)-continuous. The proof that it is also uniformly (d2, d1)-continuous is entirely

similar.

13.17 Suppose that T1, T2 are topologies on a set X , such that T1 ⊆ T2 and that (X, T1) is

Hausdorff and (X, T2) is compact. Consider the identity function from (X, T2) to (X, T1).

This is continuous since T1 ⊆ T2 , and it is certainly one-one onto. Since (X, T1) is Hausdorff

and (X, T2) is compact, it follows from the inverse function theorem Proposition 13.26 that the

identity function is a homeomorphism. So the identity function from (X, T1) to (X, T2) is also

continuous. This says that T2 ⊆ T1 . So T1 = T2 as required.

In particular if X = [0, 1] and T1 is a Hausdorff topology on [0, 1] which is contained in

the Euclidean topology T2 , then since we know that ([0, 1], T2) is compact, the first part of the

exercise shows that T1 = T2 . So T1 is not strictly coarser than the Euclidean topology T2.

13.18 Suppose for a contradiction that there is no point x0 ∈ X such that f(x0) = 0 for all

f ∈ F . Then for any x ∈ X there is a function fx ∈ F such that fx(x) �= 0, so fx(x) > 0 by

(i). By continuity of fx , there is an open set U(x) � x such that fx(y) > 0 for all y ∈ U(x).

Now {U(x) : x ∈ X} is an open cover of X , and X is compact, hence there is a finite subcover,

say {U(x1), U(x2), . . . , U(xr)} . Let f = fx1 + fx2 + . . .+ fxr . Then by iterating (ii) we see that

f ∈ F . But any x ∈ X is in U(xi) for some i ∈ {1, 2, . . . , r} so fxi
(x) > 0 while fxj

(x) � 0

for all j ∈ {1, 2, . . . , r} . This gives f(x) > 0, and this is true for all x ∈ X , contradicting (iii).

The result follows.



13.19 Let X be a compact Hausdorff space, let W ⊆ X be closed in X and let y ∈ X \ W .

Since W is a closed subset of a compact space, W is compact (by Proposition 13.20). For any

w ∈ W , by the Hausdorff condition there exist disjoint open subsets Uw, Vw of X such that

y ∈ Uw, w ∈ Vw . Now {Vw : w ∈ W} is an open cover of the compact subset W , so there is a

finite subcover {Vw1, Vw2, . . . , Vwr} . Put

U =
r⋂

i=1

Uwi
, V =

r⋃
i=1

Vwi
.

Then U, V are open in X . Also, W ⊆ V since {Vw1, Vw2, . . . , Vwr} is a cover of W . Next,

y ∈ U since y ∈ Uwi
for all i ∈ {1, 2, . . . , r} . Finally, U, V are disjoint, since for any point

v ∈ V we have v ∈ Vwi
for some i ∈ {1, 2, . . . , r} , so since Uwi

and Vwi
are disjoint, v �∈ Uwi

hence v �∈ U. This proves that X is regular.

The proof that X is normal is very similar. Suppose now that W, Y are disjoint closed

subsets of X . From the first part, for each y ∈ Y there exist disjoint open subsets Uy, Vy of X

such that y ∈ Uy, W ⊆ Vy . Now {Uy : y ∈ Y } is an open cover of Y , and Y is compact (by

Proposition 13.20) so there is a finite subcover {Uy1, Uy2, . . . , Uys} . Put

U =

s⋃
j=1

Uyj
, V =

s⋂
j=1

Vyj
.

Then U, V are open in X . Also, Y ⊆ U since {Uy1, Uy2 , . . . , Uys} is a cover for Y . Next,

W ⊆ V since W ⊆ Vyj
for all j ∈ {1, 2, . . . , s} . Finally, U and V are disjoint, since if u ∈ U

then u ∈ Uyj
for some j ∈ {1, 2, . . . , s} , so u �∈ Vyj

since Uyj
and Vyj

are disjoint, so u �∈ V .

Hence X is normal.

13.20 (a) We show that X \ pX(W ) is open in X using Proposition 7.2, that is by proving that

if x ∈ X \ pX(W ) then there is some open subset U of X such that x ∈ U ⊆ X \ pX(W ).

So let x ∈ X \ pX(W ). This means there is no y ∈ Y such that (x, y) ∈ W. So (x, y) �∈ W

for any y ∈ Y . Now W is closed in X × Y , so (x, y) is in the set (X × Y ) \ W which is open

in X ×Y . Hence by definition of the product topology, there exist open subsets Uy, Vy of X, Y

respectively such that (x, y) ∈ Uy × Vy ⊆ (X × Y ) \ W. Now {Vy : y ∈ Y } is an open cover of

Y , and Y is compact, so there exists a finite subcover {Vy1, Vy2, . . . , Vyr} . Put

U =
r⋂

i=1

Uyi
.

Then U is open in X , and x ∈ U since x ∈ Uyi
for each i ∈ {1, 2, . . . , r} . Also, U ⊆ X\pX(W ),

since if x′ ∈ U then given any y ∈ Y we know that y ∈ Vyi
for some i ∈ {1, 2, . . . , r} , so from

x′ ∈ Uyi
and (Uyi

× Vyi
) ∩ W = ∅ we get (x′, y) �∈ W . Since this is true for all y ∈ Y it follows

that x′ �∈ pX(W ). This proves that X \ pX(W ) is open in X hence pX(W ) is closed in X .

(b) A suitable example is given by Exercise 10.15(b).



13.21 First, following the hint we prove that f−1(V ) = pX(Gf ∩ p−1
Y (V )) for any subset V ⊆ Y .

For if x ∈ f−1(V ) then f(x) ∈ V, and x = pX(x, f(x)), where (x, f(x)) ∈ Gf and also

(x, f(x)) ∈ p−1
Y (V ) since pY (x, f(x)) = f(x) ∈ V.

Now suppose that x ∈ pX(Gf∩p−1
Y (V )), so there exists y ∈ Y such that (x, y) ∈ Gf∩p−1

Y (V ).

Now (x, y) ∈ Gf says that y = f(x), and (x, y) ∈ p−1
Y (V ) says that y ∈ V , so f(x) ∈ V and

x ∈ f−1(V ) as required.

Still following the hint we apply the above to a closed subset V ⊆ Y . The graph Gf is given

to be closed in X × Y and p−1
Y (V ) is closed in X × Y (by Proposition 9.5) since V is closed

in Y . So Gf ∩ p−1
Y (V ) is closed in X × Y , and since also Y is compact, by Exercise 13.20 (a),

pX(Gf ∩ p−1
Y (V )) is closed in X . This tells us that f−1(V ), which equals pX(Gf ∩ p−1

Y (V )), is

closed in X whenever V is closed in Y , so f is continuous by Proposition 9.5 .

13.22 We note that when U ′ ∈ T ′ with U ′ = V ∪ {∞} for some V ⊆ X such that X \ V is

closed in X (and compact) then V ∈ T .

We check first that T ′ is a topology on X ′ .

(T1) ∅ ∈ T ⊆ T ′ . Also, X ′ = X ∪ {∞} and X \ X = ∅ is closed in X and compact, so

X ′ ∈ T ′ .

(T2) Suppose U ′, V ′ ∈ T ′ . If U ′, V ′ ∈ T then U ′∩V ′ ∈ T ⊆ T ′ . If U ′ ∈ T and V ′ = V ∪{∞}
for some V ∈ T then U ′∩V ′ = U ′∩V ∈ T ⊆ T ′ . A similar argument works when U ′ = U∪{∞}
for some U ∈ T and V ′ ∈ T . Suppose finally that U ′ = U ∪ {∞}, V ′ = V ∪ {∞} for

some U, V ∈ T . Then U ′ ∩ V ′ = (U ∪ {∞}) ∩ (V ∪ {∞}) = (U ∩ V ) ∪ {∞} ∈ T ′ , and

X \ (U ∩ V ) = (X \ U) ∪ (X \ V ). Since both X \ U and X \ V are compact and closed in X ,

the same is true for their union, hence again U ′ ∩ V ′ ∈ T ′ .

(T3) Suppose for each i in some indexing set I , that U ′
i ∈ T ′ . Then either U ′

i ∈ T for all i ∈ I ,

in which case
⋃
i∈I

U ′
i ∈ T ⊆ T ′ , or U ′

j = Uj ∪ {∞} for j in some non-empty subset J ⊆ I , and

X \ Uj is compact and closed in X . If U ′
i ∈ T then X \ U ′

i is closed in X . Hence in this case

X ′ \
⋃
i∈I

U ′
i is a closed subset of X , and also a closed subset of a compact set X \ Uj , (for any

j ∈ J ) hence is compact. Hence again
⋃
i∈I

U ′
i ∈ T ′ .

Next we show that (X, T ) is a subspace of (X ′, T ′). First suppose that U ⊆ X is in the

topology induced on X by T ′ . Then U = U ′ ∩ X for some U ′ ∈ T ′ . Now either U ′ ∈ T , in

which case U = U ′ ∈ T , or U ′ = V ∪ {∞} where necessarily V = U and V ∈ T says that

U ∈ T .

Conversely suppose that U ∈ T then U = U ∩ X is in the topology on X induced by T ′ .

Finally we show that (X ′, T ′) is compact. Suppose that U is any open cover of X ′ . Then

∞ ∈ U0 for some U0 ∈ U . By construction, X ′ \U0 = X \U0 is compact, so there is some finite

subcover U1, U2, . . . , Un of U for X \ U0 . Then clearly U0, U1, U2, . . . , Un is a finite subcover

of U for X ′ . So (X ′, T ′) is compact.



Additional exercise(s)

1. Suppose first that f is continuous. Then the graph of f is the inverse image of the
diagonal ∆Y ⊂ Y × Y under the mapping f × idY : X × Y → Y × Y ; since Y is Hausdorff the
diagonal is closed, and therefore the graph, which is the inverse image of the diagonal, must be
closed. For this half of the proof, it is only necessary to assume that Y is Hausdorff.

Conversely, suppose that X and Y are compact Hausdorff and the graph Γf ⊂ X×Y is closed.
Since X and Y are compact Hausdorff, a closed subset of their product is also compact Hausdorff.
If ϕ : Γf → X is the restriction of the coordinate projection πX to Γf , then ϕ is continuous, 1–1
and onto, and therefore by Proposition 13.26 in Sutherland the map ϕ is a homeomorphism onto
its image. The map θ = πY |Γf is also continuous, and since f = θ oϕ−1 as a map of sets, it follows
that f is a composite of continuous maps and hence is continuous.

2. Since p is a limit point of X, for each M > 0 there is some point y 6= p such that
d(y, p) < 1/M , and this implies that f(y) > M . Therefore f is not bounded on X − {p}.

3. (i) In previous exercises we saw that f(x) = d(x,B) is a continuous function of X.
Furthermore, if B is a closed subset then f(x) > 0 on X −B. Since A ⊂ X −B and A is compact,
this means that f |A must take a minimum value and this value must be strictly positive.

(ii) Let B be the x-axis, and let A be the points on the hyperbola xy = 1 in the first quadrant.
Then d(x,B) is strictly positive on A since A and B are disjoint sets. However, we claim that the
greatest lower bound for the set of values {d(x,B) | x ∈ A} is equal to zero. This follows because
the distance from px = (x, 1/x) to qx = (x, 0) is 1/x, which means that d(px, B) < 1/x. If we take
x to be the positive integer n, then it follows that d(pn, B) < 1

n
for all n, which means that the

greatest lower bound for the set of values is less than or equal to zero. Since 0 is a lower bound for
the set of values, it follows that the greatest lower bound is zero, as claimed. However, as noted
above the function f(x) is always positive for x ∈ A, so f(x) does not take a minimum value on
A.

4. By Exercise 11.2 in Sutherland, every one point set is closed in a Hausdorff space, and
this is enough to prove that for each A ⊂ X the set L(A) of limit points is closed in X. (Proof: It
suffices to show that L(L(A)) ⊂ L(A). Given p ∈ L(L(A)) and an open neighborhood U of p we
know that (U −{p})∩L(A) 6= ∅. Let y be a point in this intersection. Then y 6= p and V = U −{y}
is also an open neighborhood of p, so we also have (U −{p, y})∩A 6= ∅. Since the left hand side is
contained in (U − {p}) ∩ A it follows that p must be a limit point of A.)

Suppose now that X is Hausdorff and A is compact. Since L(A) is contained in the closure
and L(A) is closed in X, it follows that L(A) is a closed, hence compact, subset of A .

14. Sequential compactness

Exercises from Sutherland

See the next four pages.
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Solutions to Chapter 14 exercises

14.1 Consider the sequence (1/n) in (0, 1). This has no subsequence converging to a point of

(0, 1) since the sequence (1/n), and hence every subsequence, converges in R to 0.

14.2 Suppose for a contradiction that the sequentially compact metric space (X, d) is not

bounded. Choose any point x0 ∈ X . Then for any n ∈ N there exists a point in X , call it xn ,

with d(xn, x0) � n. The sequnce (xn) has no convergent subsequence, since any subsequence

(xnr) is unbounded (d(xnr , x0) � nr ). Hence X must be bounded.

14.3 Let A be a closed subset of a sequentially compact metric space X . Let (xn) be any

sequence in A. Then (xn) is also a sequence in X , which is sequentially compact, so there is a

convergent subsequence (xnr). The point this converges to must lie in A since A is closed in X

(see Corollary 6.30). Hence A is also sequentially compact.

14.4 Let A be a sequentially compact subspace of a metric space X , and let x ∈ A . Then (see

Exercise 6.26) there is a sequence (an) of points in A converging to x. Since A is sequentially

compact, there is some subsequence (anr) of (an) converging to a point in A. But every subse-

quence of (an) converges to x, so x ∈ A. This tells us that A is closed in X (see Proposition

6.11 (c)).

14.5 Let (yn) be a sequence in f(X). For each n ∈ N there exists a point xn ∈ X such that

yn = f(xn). Since X is sequentially compact, there is some subsequence (xnr) of (xn) which

converges to a point x ∈ X . Then by continuity of f the subsequence (ynr) = (f(xnr) converges

in Y to f(x) (see Exercise 6.25). Hence f(X) is sequentially compact.

14.6 This follows from Exercise 14.5. For if f : X1 → X2 is a homeomorphism and X1 is

sequentially compact then so is X2 by Exercise 14.5, since f is continuous and onto. Since the

inverse of f is also continuous and onto, it follows likewise that if X2 is sequentially compact

then so is X1 .

14.7 This follows from Exercises 14.5 and 14.2. For if f : X → Y is a continuous map of metric

spaces and X is sequentially compact, then by Exercise 14.5 so is f(X), and hence, by Exercise

14.2, f(X) is bounded.

14.8 By Exercise 14.7 the function f is bounded, so its bounds do exist. Now f(X) is a

sequentially compact subspace of R by Exercise 14.5. Hence f(X) is closed in R by Exercise

14.4. But the bounds of a non-empty closed subset of R are in the set by Exercise 6.9. This

says that the bounds of f(X) are in f(X), which means that they are attained.



14.9 Suppose that (X, dX), (Y, dY ) are sequentially compact metric spaces. In X × Y we shall

use the product metric d1 : recall that d1((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′). Let ((xn, yn))

be any sequence in X × Y . First, since X is sequentially compact there is a subsequence (xnr)

of (xn) converging to a point x ∈ X . Now consider the sequence (ynr) in Y . Since Y is

sequentially compact, there exists a subsequence (ynrs
) of (ynr) converging to a point y ∈ Y .

Then (xnrs
) is a subsequence of (xnr) hence also converges to x. Consider the subsequence

((xnrs
, ynrs

)) of ((xn, yn)). This converges to (x, y): for let ε > 0. Since (xnrs) converges to

x, there exists S1 ∈ N such that dX(xnrs , x) < ε/2 whenever s � S1 . Similarly there exists

S2 ∈ N such that dY (ynrs, y) < ε/2 whenever s � S2 . Put S = max{S1, S2} . If s � S then

d1((xnrs , ynrs
), (x, y)) = dX(xnrs , x) + dY (ynrs, y) < ε.

So ((xn, yn)) has a subsequence converging to a point in X × Y . This shows that X × Y is

sequentially compact. (As we have seen, any ‘product metric’ will give the same answer.)

14.10 Suppose that the result is true for some n � 1, and let X be a bounded closed subset

of R
n+1 . Then X ⊆ [a, b]n+1 for some a, b ∈ R, (by Exercise 5.7), and it is sufficient to

prove that [a, b]n+1 is sequentially compact, since X is closed in this space hence then also

sequentially compact by Exercise 14.3. Now [a, b]n and [a, b] are sequentially compact by

inductive assumption and the allowed case n = 1 respectively, so [a, b]n+1 = [a, b]n × [a, b] is

sequentially compact by Exercise 14.9.

14.11 Let xn ∈ Vn for each n ∈ N. Since X is sequentially compact, there is a subsequence

(xnr) of (xn) converging to some point x ∈ X. Since the Vn are nested, xnr ∈ Vm for all r such

that nr � m. But Vm is closed in X , so x ∈ Vm (by Corollary 6.30). This is true for all m ∈ N,

so x ∈
∞⋂

n=1

Vn and this intersection is non-empty.

14.12 Suppose that C is relatively compact in a metric space (X, d), and recall that for present

purposes this means that C is sequentially compact. Now any sequence in C is also a sequence

in C , so it has a convergent subsequence. (In fact this subsequence converges to some point in

C ).

Conversely suppose that every sequence in C has a convergent subsequence. We wish to show

that C is sequentially compact. Let (xn) be any sequence in C . For each n ∈ N, since xn ∈ C

there exists yn ∈ C such that d(yn, xn) < 1/n. Now consider the sequence (yn) in C . By

hypothesis this has a convergent subsequence (ynr), say converging to y . By Proposition 6.29,

y ∈ C . Now given any ε > 0 there exists R1 ∈ N such that d(ynr , y) < ε/2 whenever r � R1

and there exists R2 ∈ N such that 1/nr < ε/2 whenever r � R2 . Put R = max{R1, R2} . If

r � R then
d(xnr , y) � d(xnr , ynr) + d(ynr , y) < ε/2 + ε/2 = ε.

Thus any sequence in C has a subsequence converging to a point in C - in other words C is

sequentially compact, so C is relatively compact.



14.13 The exercise does most of this! Following as suggested, we shall prove inductively that

[a, ai] ⊆ A for i = 1, 2, . . . , an = b. This is true for i = 1 since a0 = a ∈ A, and since

a1 − a0 < ε where ε is a Lebesgue number for the cover {A, B} , we know that [a0, a1] is

contained in a single set of the cover, and this must be A since A∩B = ∅ . Suppose inductively

that [a, ai] ⊆ A for some i ∈ {1, 2, . . . , n − 1} . Then we can repeat the above argument with

a replaced by an−1 and deduce that also [an−1, an] ⊆ A. Hence [a, b] ⊆ A, so {A, B} is not a

partition of [a, b] after all. So [a, b] is connected.

14.14 If Ui = X for some i ∈ {1, 2, . . . , n} then any ε > 0 is a Lebesgue number for U , since

for any ε > 0, any set of diameter at most ε is contained in X and hence in Ui .

(i) Suppose now that Ci �= ∅ for every i ∈ {1, 2, . . . , n} . Then continuity of the function

fi : X → R defined by fi(x) = d(x, Ci) follows from Exercise 6.16 (c). Also, from the definition

it follows that all the values of fi(x) are non-negative.

(ii) Continuity of f follows from continuity of each fi and Proposition 5.17. Let x ∈ X . Since

U is a cover for X , x ∈ Ui for at least one i ∈ {1, 2, . . . , n} so x is not in Ci = X \ Ui . Now

Ci is closed in X , so fi(x) = d(x, Ci) > 0 (by Exercise 6.16 (a)). But also fj(x) � 0 for all

j ∈ {1, 2, . . . , n} so f(x) > 0 as required.

(iii) By sequential compactness of X and Exercise 14.8, there exists ε > 0 such that f(x) � ε

for all x ∈ X .

(iv) Since there are just n values d(x, Ci) it is clear that

f(x) =
1

n

n∑
i=1

d(x, Ci) � max{d(x, Ci) : i ∈ {1, 2, . . . , n}}.

(v) For a given x ∈ X let max{d(x, Ci) : i ∈ {1, 2, . . . , n}} = d(x, Ck(x)). We prove that

Bε(x) ⊆ Uk(x) where ε is as in (iii) above. For suppose d(y, x) < ε . Then ε � f(x) � d(x, Ck(x))

so d(y, x) < d(x, Ck(x)). This says d(y, x) is less than the distance from x to Ck(x) = X \Uk(x) ,

so y ∈ Uk(x) . Hence Bε(x) ⊆ Uk(x) as required. It follows that for any x ∈ X there is a set

U ∈ U such that Bε(x) ⊆ U, so ε is a Lebesgue number for the cover U .

14.15 If say Vn0 is empty, then
∞⋂

n=1

Vn = ∅ , whose diameter is 0 by definition. Likewise in this

case diam Vn0 = 0 so inf{diam Vn : n ∈ N} = 0 also.

Suppose now that all the Vn are non-empty. (We already know from Exercise 14.11 that

their intersection is non-empty.) Now
∞⋂

n=1

Vn ⊆ Vm for any m ∈ N, so diam
∞⋂

n=1

Vn � diam Vm .

Hence diam

( ∞⋂
n=1

Vn

)
� inf{diam Vm : m ∈ N} = m0 say.



Conversely, m0 is a lower bound for the diameters of the Vn , so for any ε > 0 and any

n ∈ N we know that diam Vn > m0 − ε . Hence there exist points xn, yn ∈ Vn such that

d(xm, xn) > m0 − ε . Since X is sequentially compact, (xn) has a subsequence (xnr) converging

to a point x ∈ X , and then (ynr) has a subsequence (ynrs
) converging to a point y ∈ X .

Since (xnrs
) is a subsequence of (xnr) it too converges to x. Also, by continuity of the metric,

d(xnrs
, ynrs

) → d(x, y) as s → ∞ . Hence d(x, y) � m0 − ε . Also, x, y ∈ Vn for each n ∈ N

since Vn is closed in X . Since this is true for all n ∈ N, we have x, y ∈
∞⋂

n=1

Vn . Hence diam

∞⋂
n=1

Vn � m0 − ε . But this is true for any ε > 0, so diam

∞⋂
n=1

Vn � m0 .

The above taken together prove the result.

14.16(a) Any element of
∞⋂

n=1

Vn must be in V1 , so it is the function fm for some m ∈ N. But

fm �∈ Vn for n > m. So (a) holds.

(b) For any two distinct elements fl, fm of Vn we know that d∞(fl, fm) = 1. This shows that

diam Vn = 1.

(c) In this case, diam

∞⋂
n=1

Vn = 0, but inf{diamVn : n ∈ N} = 1. So the conclusion of Exercise

14.15 fails. (We note that the space {fn : n ∈ N} with the sup metric is not compact - see

Example 14.23.)

14.17 (a) Let x ∈ X . We want to show that x ∈ f(X). Consider the sequence (xn) in X

defined by:

x1 = x, xn+1 = f(xn) for all integers n � 1.

Since X is sequentially compact, there is a convergent subsequence, say (xnr). Any convergent

sequence is Cauchy, so given ε > 0 there exists R ∈ N such that |xnr − xns | < ε whenever

s > r � R , in particular |xnR
− xnr | whenever r > R . Now we use the isometry condition,

iterated nR − 1 times, to see that |x1 − xnr−nR+1| < ε whenever r � R . But x1 = x and

xnr−nR+1 ∈ f(X) whenever r > R . Hence x ∈ f(X). But X is compact and f is continuous,

so f(X) is compact. Also, X is metric hence Hausdorff, so f(X) is closed in X . Hence

f(X) = f(X). So x ∈ f(X) for any x ∈ X , which says that f is onto. Hence f is an isometry.

(b) We can apply (a) to the compositions g ◦ f : X → X and f ◦ g : Y → Y to see that these

are both onto. Since g ◦ f is onto, g is onto. Similarly since f ◦ g is onto, f is onto. Hence

both f and g are isometries.

(c) We just define f : (0, ∞) → (0, ∞) by f(x) = x + 1.



Additional exercise(s)

1. (i) Assume that X is limit point compact, and let {xn} be an infinite sequence in X. If
the set S = {x0, x1, etc.} only has finitely elements, then some y in this set must appear infinitely
often, and if we choose n(k) so that xn(k) = y for each k, then {xn(k)} is a constant sequence and
hence its limit is y. Suppose now that there are infinitely many distinct points in S. In this case
we have a limit point y. Define a subsequence recursively starting with xn(0) = x0 by the usual
method: If we have xn(k) 6= y for k < m, then we take xn(m) to be a point xp 6= y such that

p > n(m − 1) > · · · > n(m) = 0 and d(y, xn(m)) is less than 1
m

and the minimum of d(y, xn(k))
for k < m. It follows immediately that

lim
k→∞

xn(k) = y

and hence we have constructed a convergent subsequence.

Conversely, assume that X is sequentially compact, and let A be an infinite subset of X. Then
we can find a sequence {an} in A such that i 6= j implies ai 6= aj , and by sequential compactness
this sequence has a convergent subsequence {an(k)}. If b is the limit of this sequence, we claim that
b ∈ L(A). Let ε > 0; since d(b, an(k)) < ε for sufficiently large values of k, it suffices to show that
we can construct a convergent subsequence such that b 6= an(k) for all k. However, if b = an(m) for
some m, then we can obtain a new subsequence {cn(k)} with the desired property and the same
limit by setting cn(k) = an(k+m+1)} because an(k) 6= an(m) = b for k > m.

(ii) Follow the hint, and assume we have a subset S with no limit points. Then S = S∪L(S) =
S, so S is closed in X, and likewise for every subset T ⊂ S. As indicated in the hint, take an infinite
sequence of distinct points xk ∈ S, let T = {x1, x2, etc.}, and set Tn equal to T = {xn, xn+1, etc.}.
Then each Tn is a nonempty closed subset and Tn ⊃ Tn+1 for all n, but ∩n Tn = ∅. This contradicts
the alternate characterization of compactness in Exercise 13.6 of Sutherland (which also appears
in math145Anotes13.pdf). The source of the contradiction was the assumption that L(S) = ∅, so
this must be false. Therefore every infinite subset of the compact space X must have at least one
limit point.

2. As indicated in the hint, without loss of generality we may assume that s < t. Given a
function f in D(A,B), the Mean Value Theorem implies that

f(t) − f(s) = f ′(ξ) · (t − s)

for some ξ ∈ (s, t). By hypothesis |f ′(x)| ≤ B for all x, and therefore |f(t)− f(s)| = |f ′(ξ)||t− s| ≤
B · |t − s|. Therefore, if ε > 0 and δ = ε/B, then |s − t| < δ implies |f(s) − f(t)| < ε.
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