UPDATED GENERAL INFORMATION — FEBRUARY 29, 2016

Compactness of closed intervals

A proof that the Heine-Borel-Lebesgue Theorem implies compactness is given in the file compactness-examples.pdf.

Hints for the Quiz 3 study problems

In the interests of not giving everything away, these are deliberately a little sketchy. Items like definitions and statements of theorems are not covered.
(3) Look at regions in the plane with empty and nonempty intersections.
(5) What happens if X is the real numbers, A is a closed interval, and B is obtained from A by deleting one endpoint?
(6) If $x \in X$ why is $\{x\}$ Hausdorff in the subspace topology? How many ways are there of putting a topology on $\{x\}$?
(7) Why can we choose the subspace to be a product of closed intervals? Note that the problem should end with " D." and that "properties.]" should be omitted.
(8) If $A_{i}, B_{i} \subset X_{i}$ for $i=1,2$, then we have $\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)=\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)$.
(9) The word "connected" should be added at the end. - Recall what we have shown about connected subsets and continuous mappings, and likewise for Cartesian products.
(10) In a circle, the complement of every one point subset is connected.

