
EXERCISES FOR MATHEMATICS 145B

SPRING 2015 — Part 3

The remarks at the beginning of Part 1 also apply here. The references denote sections of the
texts for the course (Munkres and Crossley).

III . Homotopy

III.1 : Basic definitions

(Munkres, § 51; Crossley, § 6.1)

Munkres, § 51, p. 330: 1 – 3

Additional exercises

1. Let X be a topological space, and let P be a topological space consisting of exactly one point
(it has a unique topology). Explain why the set of homotopy classes [P,X] is in 1–1 correspondence
with the set of arc components of X.

2. Let Y be a nonempty space with the discrete topology (all subsets are open), and let X be
a nonempty connected space. Prove that there is a 1–1 correspondence between [X,Y ] and Y .

3. (i) Show that if A is a star convex subset of R
n in the sense of Munkres, Exercise 1, page

334, then the identity map is homotopic to the constant map which sends every point to the “focal
point” a0 (by definition, this is the point such that for each x ∈ A the closed segment joining x to
a0 lies in A).

(ii) Suppose that {Aα} is a nonempty collection of convex subsets in R
n and that there is a

point p in their intersection. Prove that the union ∪α Aα is a star convex set.

(iii) Let Y ⊂ R
2 be the union of the x− and y−axes. Show that Y is star convex but not

convex.

4. Let W , X and Y be topological spaces, and let u ∈ [W,X] and v ∈ [X,Y ] be homotopy
classes of continuous mappings. Prove that there is a well-defined homotopy class v ou ∈ [W,Y ]
with the following property: If f and g are representatives for the equivalence classes u and v, then
g of is a representative for v ou. [Hint: Use Exercise 1 from Munkres.]

5. Let W be a topological space, and let f : X → Y be continuous.

(i) Using the preceding exercise, show that there is a well defined map of sets f∗ : [W,X] →
[W,Y ] such that if v ∈ [W,X] is represented by g : W → X, then f∗(v) is represented by f og.
Also, explain why f∗ is the identity map if f = idX .

(ii) Suppose we also have a continuous mapping h : Y → Z. Prove that (h of)∗ = h∗
of∗.

(iii) Similarly, show that there is a well defined map of sets f ∗ : [Y,W ] → [X,W ] such that if
v ∈ [W,Y ] is represented by g : W → Y , then f ∗(v) is represented by g of . Also, explain why f ∗

is the identity map if f = idY .
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(iv) Suppose we also have a continuous mapping h : Z → X. Prove that (f oh)∗ = h∗ of∗.

III.2 : Homotopy equivalence

(Munkres, § 58; Crossley, § 6.2)

Munkres, § 58, pp. 366–367: 1, 3

Additional exercises

1. If X and Y are topological spaces and f, g : X → Y are homotopic homeomorphisms, prove
that their inverses f−1 and g−1 are also homotopic. [Caution: If H is a homotopy from f to g and
t ∈ [0, 1], then the maps ht : X → Y given by ht ↔ H|X×{t} are not necessarily homeomorphisms.
Why are the composites g−1 of of−1 and g−1 og of−1 homotopic?]

2. Show that two discrete spaces are homotopy equivalent if and only if they have the same
cardinalities.

3. Suppose that X and Y are nonempty spaces such that X ×Y is contractible. Prove that both
X and Y are contractible. [Hint: If i : X → X × Y is a slice inclusion sending x to (y, 0) and
p : X × Y → X is coordinate projection, then p oi = p o idX×Y

oi is the identity on X. If X × Y is
contractible, then the identity map is homotopic to a constant map. Apply one of the preceding
exercises.]

4. Suppose that we are given continuous mappings f, g : X → Sn such that f(x) 6= −g(x) for
all x. Prove that f is homotopic to g. [Hint: If j : Sn ⊂ R

n+1 − {0} is the inclusion map, first
show that j of and j og are homotopic. If you try to use a straight line homotopy, remember that
you need to verify that the origin is not contained in its image.]

5. Suppose that 0 < a ≤ 1 and consider the off center circle in C−{0} defined by ϕa(z) = z +1.
Prove that if a < 1 then ϕa is homotopic to ϕ1 in C − {0}. [Hint: Show that the image of the
homotopy H(z, t) = z + ta does not include 0.]

6. Let f1 : X1 → Y1 and f2 : X2 → Y2 be homotopy equivalences of topological spaces. Prove
that the product map

f1 × f2 : X1 × X2 −→ Y1 × Y2

is also a homotopy equivalence. [Hint: Recall that a mapping into a product space is continuous
if and only if its coordinate projections are continuous, and use this to construct the required
homotopies.]

7. (i) Suppose that a topological space X is equal to A ∪ F where A and F are closed subsets,
and let B = A ∩ F . Prove that if B is a strong deformation retract of F , then A is a strong
deformation retract of X.

(ii) Suppose that a topological space X is a union of two closed subsets F1 ∪ F2, and let
C = F1 ∩ F2. Prove that if C is a strong deformation retract of both F1 and F2, then C is also a
strong deformation retract of X.

8. Show that a space X is contractible if and only if every continuous map f : X → Y , for
arbitrary Y , is homotopic to a constant map. Similarly, show X is contractible if and only if every
continuous map f : Y → X is homotopic to a constant map.

9. (i) Show that a homotopy equivalence f : X → Y induces a 1–1 correspondence between
the set of arc components of X and the set of arc components of Y .
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(ii) For each arc component A of X, show that f restricts to a homotopy equivalence from A

of X to an arc component B of Y .

(iii) Prove also the corresponding statements with components instead of arc components.

(iv) Why does it follow if the components of a space X coincide with its arc components, then
the same holds for any space Y homotopy equivalent to X?

III.3 : The circle

(Munkres, §§ 52, 54; Crossley, § 6.3)

Definition. (For the purposes of this course) If f : S1 → S1 is a continuous mapping, then the
degree of f , written deg (f) is the integer defined as follows: Let ω(t) = exp 2π i t, let t0 ∈ R be
such that p(t0) = f oω(0) — where p : R → S1 is the usual map p(t) = exp 2π i t, take β to be
the unique path lifting of f oω starting at t0, and set deg (f) equal to the unique integer n such
that β(1) = t0 + n. This integer exists because p oβ(1) = p oβ(0), which means that β(1) − β(0) is
an integer. Since an arbitrary lifting α of f oω is given by α(t) = β(t) + m for some integer m, it
follows that deg (f) does not depend upon the choice of t0.

Additional exercises

1. Each of the spaces below is either contractible or homotopy equivalent to S 1. For each
example, determine which alternative holds. You do not need to give detailed proofs.

(a) The solid torus D2 × S1.

(b) The cylinder S1 × [0, 1].

(c) The infinite cylinder S1 × R.

(d) The set of all points x ∈ R
2 such that |x| ≥ 1.

(e) The set of all points x ∈ R
2 such that |x| > 1.

(f) The set of all points x ∈ R
2 such that |x| < 1.

(g) The subset of R
2 given by S1 ∪

(

R
+ × {0}

)

, where R
+ denotes the positive real numbers.

(h) The subset of R
2 given by S1 ∪

(

R
+ × R

)

, where R
+ denotes the positive real numbers.

2. The following questions use the notion of degree for a continuous mapping from S 1 to itself.

(a) If f, g : S1 → S1 are continuous mappings and we take the complex multiplication operation
on S1 ⊂ C, define h(z) to be the product h(z) = f(z) · g(z). Show that deg(h) is equal to
deg(f) + deg(g). [Hint: Recall that the winding map p : R → S1 has the multiplicative property
p(t1 + t2) = p(t1) · p(t2).]

(b) If f, g : S1 → S1 are homotopic continuous mappings, then deg(f) = deg(g).

(c) If f, g : S1 → S1 are continuous mappings, define h(z) to be the composite h(z) = f og(z).
Show that deg(h) is equal to deg(f) · deg(g). [Hint: Why does it suffice to consider the cases
where f(z) = zp and g(z) = zq where p and q are the respective degrees? For these examples, the
identity is true by the laws of exponents.]
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3. Find the mistake in the following argument which purports to show that the mappings
f(z) = z and g(z) = z2 from S1 to itself are homotopic: Let H(z, t) = zt+1. Then H(z, 0) = f(z)
and H(z, 1) = g(z).

III.4 : The Brouwer Fixed Point Theorem

(Munkres, § 55; Crossley, § 6.4)

Additional exercises

1. A space X is said to have the Fixed Point Property if for each continuous mapping
f : X → X there is some p ∈ X such that f(p) = p. By the Brouwer Fixed Point Theorem and
its consequences, a space X has the Fixed Point Property if X is homeomorphic to D2 (and more
generally for all Dn, but this is not proved in the course. In contrast, if X = Sn then the antipodal
map T (x) = −x has no fixed points, so Sn does not have the Fixed Point Property.

(a) Prove that if X has the Fixed Point Property, then X is connected.

(b) Prove that if X does not have the Fixed Point Property and Y is an arbitrary space, then
X × Y also does not have the Fixed Point Property.

2. Suppose that X and Y are nonempty topological spaces such that X×Y has the Fixed Point
Property. Prove that X and Y have the fixed point property. [Hint: If f : X → X is continuous,
consider the map f × idY .]

3. Let f : S1 → S1 be a continuous mapping such that deg(f) 6= 1. Prove that f has a fixed
point. [Hint: Apply Additional Exercise III.2.4 with g(x) = −x. What is the degree of the map
h : S1 → S1 given by h(z) = −z?]
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