EXERCISES FOR MATHEMATICS 145B SPRING 2015 - Part 3

The remarks at the beginning of Part 1 also apply here. The references denote sections of the texts for the course (Munkres and Crossley).

III. Homotopy

III. 1 : Basic definitions

(Munkres, § 51; Crossley, § 6.1)
Munkres, § 51, p. 330: 1 - 3

Additional exercises

1. Let X be a topological space, and let P be a topological space consisting of exactly one point (it has a unique topology). Explain why the set of homotopy classes $[P, X]$ is in 1-1 correspondence with the set of arc components of X.
2. Let Y be a nonempty space with the discrete topology (all subsets are open), and let X be a nonempty connected space. Prove that there is a $1-1$ correspondence between $[X, Y]$ and Y.
3. (i) Show that if A is a star convex subset of \mathbb{R}^{n} in the sense of Munkres, Exercise 1, page 334, then the identity map is homotopic to the constant map which sends every point to the "focal point" a_{0} (by definition, this is the point such that for each $x \in A$ the closed segment joining x to a_{0} lies in A).
(ii) Suppose that $\left\{A_{\alpha}\right\}$ is a nonempty collection of convex subsets in \mathbb{R}^{n} and that there is a point p in their intersection. Prove that the union $\cup_{\alpha} A_{\alpha}$ is a star convex set.
(iii) Let $Y \subset \mathbb{R}^{2}$ be the union of the $x-$ and y-axes. Show that Y is star convex but not convex.
4. Let W, X and Y be topological spaces, and let $u \in[W, X]$ and $v \in[X, Y]$ be homotopy classes of continuous mappings. Prove that there is a well-defined homotopy class $v{ }^{\circ} u \in[W, Y]$ with the following property: If f and g are representatives for the equivalence classes u and v, then $g^{\circ} f$ is a representative for $v^{\circ} u$. [Hint: Use Exercise 1 from Munkres.]
5. Let W be a topological space, and let $f: X \rightarrow Y$ be continuous.
(i) Using the preceding exercise, show that there is a well defined map of sets $f_{*}:[W, X] \rightarrow$ $[W, Y]$ such that if $v \in[W, X]$ is represented by $g: W \rightarrow X$, then $f_{*}(v)$ is represented by $f \circ g$. Also, explain why f_{*} is the identity map if $f=\operatorname{id}_{X}$.
(ii) Suppose we also have a continuous mapping $h: Y \rightarrow Z$. Prove that $(h \circ f)_{*}=h_{*} \circ f_{*}$.
(iii) Similarly, show that there is a well defined map of sets $f^{*}:[Y, W] \rightarrow[X, W]$ such that if $v \in[W, Y]$ is represented by $g: W \rightarrow Y$, then $f^{*}(v)$ is represented by $g \circ f$. Also, explain why f^{*} is the identity map if $f=\operatorname{id}_{Y}$.
(iv) Suppose we also have a continuous mapping $h: Z \rightarrow X$. Prove that $(f \circ h)^{*}=h^{*} \circ f^{*}$.

III. 2 : Homotopy equivalence

(Munkres, § 58; Crossley, § 6.2)
Munkres, § 58, pp. 366-367: 1, 3

Additional exercises

1. If X and Y are topological spaces and $f, g: X \rightarrow Y$ are homotopic homeomorphisms, prove that their inverses f^{-1} and g^{-1} are also homotopic. [Caution: If H is a homotopy from f to g and $t \in[0,1]$, then the maps $h_{t}: X \rightarrow Y$ given by $h_{t} \leftrightarrow H \mid X \times\{t\}$ are not necessarily homeomorphisms. Why are the composites $g^{-1} \circ f \circ f^{-1}$ and $g^{-1} \circ g^{\circ} f^{-1}$ homotopic?]
2. Show that two discrete spaces are homotopy equivalent if and only if they have the same cardinalities.
3. Suppose that X and Y are nonempty spaces such that $X \times Y$ is contractible. Prove that both X and Y are contractible. [Hint: If $i: X \rightarrow X \times Y$ is a slice inclusion sending x to $(y, 0)$ and $p: X \times Y \rightarrow X$ is coordinate projection, then $p^{\circ} i=p^{\circ} \mathrm{id}_{X \times Y}{ }^{\circ} i$ is the identity on X. If $X \times Y$ is contractible, then the identity map is homotopic to a constant map. Apply one of the preceding exercises.]
4. Suppose that we are given continuous mappings $f, g: X \rightarrow S^{n}$ such that $f(x) \neq-g(x)$ for all x. Prove that f is homotopic to g. [Hint: If $j: S^{n} \subset \mathbb{R}^{n+1}-\{\mathbf{0}\}$ is the inclusion map, first show that $j{ }^{\circ} f$ and $j^{\circ} g$ are homotopic. If you try to use a straight line homotopy, remember that you need to verify that the origin is not contained in its image.]
5. Suppose that $0<a \leq 1$ and consider the off center circle in $\mathbb{C}-\{0\}$ defined by $\varphi_{a}(z)=z+1$. Prove that if $a<1$ then φ_{a} is homotopic to φ_{1} in $\mathbb{C}-\{0\}$. [Hint: Show that the image of the homotopy $H(z, t)=z+t a$ does not include 0.]
6. Let $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ be homotopy equivalences of topological spaces. Prove that the product map

$$
f_{1} \times f_{2}: X_{1} \times X_{2} \longrightarrow Y_{1} \times Y_{2}
$$

is also a homotopy equivalence. [Hint: Recall that a mapping into a product space is continuous if and only if its coordinate projections are continuous, and use this to construct the required homotopies.]
7. (i) Suppose that a topological space X is equal to $A \cup F$ where A and F are closed subsets, and let $B=A \cap F$. Prove that if B is a strong deformation retract of F, then A is a strong deformation retract of X.
(ii) Suppose that a topological space X is a union of two closed subsets $F_{1} \cup F_{2}$, and let $C=F_{1} \cap F_{2}$. Prove that if C is a strong deformation retract of both F_{1} and F_{2}, then C is also a strong deformation retract of X.
8. Show that a space X is contractible if and only if every continuous map $f: X \rightarrow Y$, for arbitrary Y, is homotopic to a constant map. Similarly, show X is contractible if and only if every continuous map $f: Y \rightarrow X$ is homotopic to a constant map.
9. (i) Show that a homotopy equivalence $f: X \rightarrow Y$ induces a 1-1 correspondence between the set of arc components of X and the set of arc components of Y.
(ii) For each arc component A of X, show that f restricts to a homotopy equivalence from A of X to an arc component B of Y.
(iii) Prove also the corresponding statements with components instead of arc components.
(iv) Why does it follow if the components of a space X coincide with its arc components, then the same holds for any space Y homotopy equivalent to X ?

III. 3 : The circle

(Munkres, §§ 52, 54; Crossley, § 6.3)
Definition. (For the purposes of this course) If $f: S^{1} \rightarrow S^{1}$ is a continuous mapping, then the degree of f, written $\operatorname{deg}(f)$ is the integer defined as follows: Let $\omega(t)=\exp 2 \pi i t$, let $t_{0} \in \mathbb{R}$ be such that $p\left(t_{0}\right)=f \circ \omega(0)$ - where $p: \mathbb{R} \rightarrow S^{1}$ is the usual map $p(t)=\exp 2 \pi i t$, take β to be the unique path lifting of $f \circ \omega$ starting at t_{0}, and set $\operatorname{deg}(f)$ equal to the unique integer n such that $\beta(1)=t_{0}+n$. This integer exists because $p^{\circ} \beta(1)=p^{\circ} \beta(0)$, which means that $\beta(1)-\beta(0)$ is an integer. Since an arbitrary lifting α of $f{ }^{\circ} \omega$ is given by $\alpha(t)=\beta(t)+m$ for some integer m, it follows that $\operatorname{deg}(f)$ does not depend upon the choice of t_{0}.

Additional exercises

1. Each of the spaces below is either contractible or homotopy equivalent to S^{1}. For each example, determine which alternative holds. You do not need to give detailed proofs.
(a) The solid torus $D^{2} \times S^{1}$.
(b) The cylinder $S^{1} \times[0,1]$.
(c) The infinite cylinder $S^{1} \times \mathbb{R}$.
(d) The set of all points $x \in \mathbb{R}^{2}$ such that $|x| \geq 1$.
(e) The set of all points $x \in \mathbb{R}^{2}$ such that $|x|>1$.
(f) The set of all points $x \in \mathbb{R}^{2}$ such that $|x|<1$.
(g) The subset of \mathbb{R}^{2} given by $S^{1} \cup\left(\mathbb{R}^{+} \times\{0\}\right)$, where \mathbb{R}^{+}denotes the positive real numbers.
(h) The subset of \mathbb{R}^{2} given by $S^{1} \cup\left(\mathbb{R}^{+} \times \mathbb{R}\right)$, where \mathbb{R}^{+}denotes the positive real numbers.
2. The following questions use the notion of degree for a continuous mapping from S^{1} to itself.
(a) If $f, g: S^{1} \rightarrow S^{1}$ are continuous mappings and we take the complex multiplication operation on $S^{1} \subset \mathbb{C}$, define $h(z)$ to be the product $h(z)=f(z) \cdot g(z)$. Show that $\operatorname{deg}(h)$ is equal to $\operatorname{deg}(f)+\operatorname{deg}(g)$. [Hint: Recall that the winding map $p: \mathbb{R} \rightarrow S^{1}$ has the multiplicative property $p\left(t_{1}+t_{2}\right)=p\left(t_{1}\right) \cdot p\left(t_{2}\right)$.]
(b) If $f, g: S^{1} \rightarrow S^{1}$ are homotopic continuous mappings, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
(c) If $f, g: S^{1} \rightarrow S^{1}$ are continuous mappings, define $h(z)$ to be the composite $h(z)=f \circ g(z)$. Show that $\operatorname{deg}(h)$ is equal to $\operatorname{deg}(f) \cdot \operatorname{deg}(g)$. [Hint: Why does it suffice to consider the cases where $f(z)=z^{p}$ and $g(z)=z^{q}$ where p and q are the respective degrees? For these examples, the identity is true by the laws of exponents.]
3. Find the mistake in the following argument which purports to show that the mappings $f(z)=z$ and $g(z)=z^{2}$ from S^{1} to itself are homotopic: Let $H(z, t)=z^{t+1}$. Then $H(z, 0)=f(z)$ and $H(z, 1)=g(z)$.

III. 4 : The Brouwer Fixed Point Theorem

(Munkres, § 55; Crossley, § 6.4)

Additional exercises

1. A space X is said to have the Fixed Point Property if for each continuous mapping $f: X \rightarrow X$ there is some $p \in X$ such that $f(p)=p$. By the Brouwer Fixed Point Theorem and its consequences, a space X has the Fixed Point Property if X is homeomorphic to D^{2} (and more generally for all D^{n}, but this is not proved in the course. In contrast, if $X=S^{n}$ then the antipodal map $T(x)=-x$ has no fixed points, so S^{n} does not have the Fixed Point Property.
(a) Prove that if X has the Fixed Point Property, then X is connected.
(b) Prove that if X does not have the Fixed Point Property and Y is an arbitrary space, then $X \times Y$ also does not have the Fixed Point Property.
2. \quad Suppose that X and Y are nonempty topological spaces such that $X \times Y$ has the Fixed Point Property. Prove that X and Y have the fixed point property. [Hint: If $f: X \rightarrow X$ is continuous, consider the map $f \times \mathrm{id}_{Y}$.]
3. Let $f: S^{1} \rightarrow S^{1}$ be a continuous mapping such that $\operatorname{deg}(f) \neq 1$. Prove that f has a fixed point. [Hint: Apply Additional Exercise III.2.4 with $g(x)=-x$. What is the degree of the map $h: S^{1} \rightarrow S^{1}$ given by $\left.h(z)=-z ?\right]$
