EXERCISES FOR MATHEMATICS 145B
 SPRING 2015 - Part 4

The remarks at the beginning of Part 1 also apply here. The references denote sections of the texts for the course (Munkres and Crossley).

IV . Homotopy groups

IV.1: Pointed spaces

(Munkres, § 51; Crossley, §§ 8.1-8.2, 8.5)

Additional exercises

1. (a) If (X, x) is a pointed space and $A \subset X$, can we find a base point a for A such that the inclusion $(A, a) \rightarrow(X, x)$ is a base point preserving map? Give reasons for your answer.
(b) If (A, a) is a pointed space and $A \subset X$, why is it always possible to find a base point for X such that the inclusion map from A to X is base point preserving?
2. (a) Let (X, x) and (Y, y) be pointed spaces, and make $X \times Y$ into a pointed space by taking the base point to be (x, y). As usual let p_{X} and p_{Y} denote the coordinate projections onto X and Y respectively. Prove that if (W, w) is a pointed space, then a continuous mapping $f: W \rightarrow X \times Y$ is base point preserving if and only if $p_{X}{ }^{\circ} f$ and $P_{Y}{ }^{\circ} f$ are.
(b) Suppose that we are given the setting of (a), and assume that the sets $\{x\}$ and $\{y\}$ are closed in X and Y respectively. Define the wedge or one point union $(X, x) \vee(Y, y)$ to be the subspace

$$
X \vee Y=X \times\{y\} \cup\{x\} \times Y \subset X \times Y
$$

with base point (x, y) as before. Prove that the pointed space $(X \vee Y,(x, y))$ has the following universal mapping property: If (Z, z) is a pointed space and $f:(X, x) \rightarrow(Z, z)$ and $g:(Y, y) \rightarrow$ (Z, z) are base point preserving maps, then there is a unique continuous base point preserving map $h:(X \vee Y,(x, y)) \rightarrow(Z, z)$ such that the restrictions of h to (X, x) and (Y, y) are f and g respectively.
3. A continuous mapping $i: A \rightarrow X$ is said to be a retract if there is a continuous mapping $r: X \rightarrow A$ such that $r^{\circ} i$ is the identity on A.
(a) Prove that the mapping i is $1-1$ and the mapping r is onto.
(b) If X is Hausdorff, prove that i is a closed mapping (and hence the topology on A is the subspace topology).
(c) If $a \in A$ is a base point, show that there is a base point for X such that both i and r are base point preserving maps.
(d) Suppose that $i: A \rightarrow X$ is a retract and Y is an arbitrary space. Let $f, g: Y \rightarrow A$ be continuous mappings. Prove that if $i{ }^{\circ} f \simeq i^{\circ} g$, then $f \simeq g$. [Hint: What happens if we compose with r ?]
4. (a) Let P be the one point space $\{q\}$, and take q to be its base point (in fact, there is only one possible choice). Given a pointed space (X, x), explain why there are unique continuous base point preserving mappings $(P, q) \rightarrow(X, x)$ and $(X, x) \rightarrow(P, q)$.
(b) Suppose that (N, n) is a pointed space such that for each pointed space (X, x) there are unique continuous base point preserving mappings $(N, n) \rightarrow(X, x)$ and $(X, x) \rightarrow(N, n)$. Prove that N consists of a single point. [Hint: The hypotheses imply that there is a unique continuous base point preserving mapping from (N, n) to itself. Why is this the identity mapping, and what does this imply about the composites $(N, n) \rightarrow(P, q) \rightarrow(N, n)$ and $(P, q) \rightarrow(N, n) \rightarrow(P, q) ?]$

IV. 2 : Algebraic Structure

(Munkres, § 52; Crossley, §§ 8.1-8.3)

Additional exercises

1. (a) Let X be a topological space, and suppose that α and β are continuous curves in X such that $\alpha(0)=\beta(0)=x_{0}$ and $\alpha(1)=\beta(1)=x_{1}$. Prove that α is endpoint preservingly homotopic to β if and only if $\alpha+(-\beta)$ is base point preservingly homotopic to a constant curve. Why is this also equivalent to the condition that $\beta+(-\alpha)$ is homotopic to a constant curve?
(b) Let X be an arcwise connected space. Prove that the following are equivalent:

For every $p, q \in X$, all continuous curves joining p to q are endpoint preservingly homotopic.

For every $x \in X$, all continuous closed curves based at x are base point preservingly homotopic.

A space satisfying either (hence both) of these conditions is said to be simply connected.
2. If K is a nonempty convex subset of \mathbb{R}^{n}, explain why K is simply connected.
3. Suppose that (X, x) is a Hausdorff space, let $x \in A \subset X$, and suppose that the inclusion $\operatorname{map} i:(A, x) \rightarrow(X, x)$ is a retract with one-sided inverse $r:(X, x) \rightarrow(A, x)$. Prove the induced map of fundamental groups i_{*} is $1-1$, and also prove that every element of $\pi_{1}(X, x)$ has a unique factorization of the form $i_{*}(u) \cdot v$, where $u \in \pi_{1}(X, x)$ and v lies in the kernel of r_{*}.

WARNING. $\left(i_{*}\left(u_{1}\right) \cdot v_{1}\right) \cdot\left(i_{*}\left(u_{2}\right) \cdot v_{2}\right)$ is necessarily not equal to $i_{*}\left(u_{1} u_{2}\right) \cdot v_{1} v_{2}$.

IV. 3 : Simple cases

(Munkres, § 54; Crossley, §§ 6.3, 8.3)
Munkres, § 52, pp. 334-335: 1b, 5, 7

Additional exercises

1. Let $f:\left(S^{1}, 1\right) \rightarrow\left(S^{1}, 1\right)$ be a continuous mapping which is not onto. Prove that f represents the trivial element of $\pi_{1}\left(S^{1}, 1\right)$. [Hint: Let $g:[0,1] \rightarrow \mathbb{R}$ be the unique lifting such that $g(0)=0$; more precisely, we have $f(\cos 2 \pi t, \sin 2 \pi t)=(\cos 2 \pi g(t), \sin 2 \pi g(t)))$. Why is f onto if $g(1) \neq 0$? Explain why if $g(1) \neq 0$ then the image of g contains either $[-1,0]$ or $[0,1]$.
2. Identify the space of $n \times n$ matrices over the complex numbers with $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$, and let $\mathbf{G L}(n, \mathbb{C})$ denote the group of invertible $n \times n$ matrices over the complex numbers. Let $j: S^{1} \rightarrow$ $\mathbf{G L}(n, \mathbb{C})$ denote the homomorphism which sends $z \in S^{1}$ to the diagonal matrix whose upper left entry is z and whose remaining diagonal entries are ones. Prove that j induces a $1-1$ mapping of fundamental groups. [Hint: If $\Delta: \mathbf{G L}(n, \mathbb{C}) \rightarrow \mathbb{C}-\{0\}$ is the determinant map, why is Δ continuous and why is $\Delta^{\circ} j$ a homotopy equivalence?]

IV.4: Change of base point

(Munkres, § 52)
Munkres, § 54, pp. 334-335: 6

Additional exercises

1. Compute the fundamental group of $\left(\mathbb{R}^{2}-S^{1}, z\right)$ for all choices of $z \in \mathbb{R}^{2}-S^{1}$.
2. Let G be an arcwise connected topological group with identity element 1 , and let $g \in G$. Why do all continuous paths from 1 to g induce the same isomorphism from $\pi_{1}(G, 1)$ to $\pi_{1}(G, g)$?

Definitions. Let $p: E \rightarrow B$ be a continuous mapping. The p is said to have the Path Lifting Property (PLP) if the first statement below is true, and p is said to have the Covering Homotopy Property (CHP) if the second statemnt below is true:
$(\mathbf{P L P})$ Let $b_{0} \in B$, and assume that $p\left(e_{0}\right)=b_{0}$. Then a continuous path $f:[0,1] \rightarrow B$ beginning at b_{0} has a unique lifting to a continuous path $f:[0,1] \rightarrow E$ beginning at e_{0}.
(CHP) Let b_{0} and e_{0} be as above, and assume that $h:[0,1] \times[0,1] \rightarrow B$ is continuous with $h(0,0)=b_{0}$. Then there is a unique lifting of h to a continuous map $H:[0,1] \times[0,1] \rightarrow E$ such that $H(0,0)=e_{0}$.
The results of Section III. 3 in the course imply that the map $p: \mathbb{R} \rightarrow S^{1}$ given by $p(t)=$ $\exp (2 \pi i t)$ has both of these properties.
3. (a) Prove that if p has the Path Lifting Property and B is arcwise connected, then p is onto.
(b) Prove that if p has the Covering Homotopy Property, then p also has the Path Lifting Property. [Hint: Consider the homotopy $H(s, t)=\gamma(s)$.]
4. (Compare Munkres, Theorems 53.2 and 53.3.) (a) Prove that if $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ satisfy the PLP and CHP, then so does $p \times p^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$.
(b) Suppose that $p: E \rightarrow B$ satisfies the PLP and CHP and B_{0} is a subspace of B. If $E_{0}=p^{-1}\left[B_{0}\right]$, then the map $p_{0}: E_{0} \rightarrow B_{0}$ obtained by restricting p also satisfies the PLP and CHP.
5. The purpose of this exercise is to prove the existence of a (pointed) space (X, x) such that $\pi_{1}(X, x)$ is not abelian.
(a) Suppose that $(X, x)=\left(S^{1} \vee S^{1},(1,1)\right)$ as in Exercise IV.1.2, so that X is a union of the two circles $S^{1} \times\{1\}$ and $\{1\} \times S^{1}$ which have a single point in common. Using the preceding exercise, prove that the restriction of $p \times p: \mathbb{R} \times \mathbb{R} \rightarrow S^{1} \times S^{1}$ to the inverse image of X defines a continuous mapping

$$
q: \Gamma=(\mathbb{R} \times \mathbb{Z}) \cup(\mathbb{Z} \times \mathbb{R}) \longrightarrow X
$$

which satisfies the PLP and CHP (see exercises4as15.pdf for a drawing of Γ, which is a union of vertical and horizontal lines).
(b) For $j=0,1$ let $i_{j}:\left(S^{1}, 1\right) \rightarrow\left(S^{1}, 1\right) \times\left(S^{1}, 1\right)$ denote the base point preserving slice inclusion into the $j^{\text {th }}$ factor, and let $\theta:[0,1] \rightarrow S^{1}$ be the usual counterclockwise parametrization $\theta(t)=\exp (2 \pi i t)$, and define θ_{j} to be the composite $i_{j}{ }^{\circ} \theta$. Explain why the unique lifting Δ of the iterated concatenation $\left(\theta_{1}+\theta_{2}\right)+\left(\left(-\theta_{1}\right)+\left(-\theta_{2}\right)\right)$ is the usual counterclockwise parametrization for the boundary F of the unit square; namely, $\left(\alpha_{1}+\beta_{2}\right)++\left(\left(-\alpha_{2}\right)+\left(-\beta_{1}\right)\right)$, where $\alpha_{1}(t)=(t, 0)$, $\alpha_{2}(t)=(t, 1), \beta_{1}(t)=(0, t)$ and $\beta_{2}(t)=(1, t)$. You do not need to give a detailed argument.
(c) Show that the parametrization for the boundary F of the unit square in (b) defines a homeomorphism from S^{1} to F.
(d) Show that the closed curve Δ is not homotopic to the trivial element of $\pi_{1}(\Gamma,(0,0))$ as follows: First, explain why (c) implies that Δ does not represent the trivial element of $\pi_{1}(F,(0,0))$. Next, prove that F is a retract of Γ by considering the composite of
(1) the map $\Gamma \rightarrow([0,1] \times \mathbb{Z}) \cup(\{0,1\} \times \mathbb{R})$ sending (u, v) to itself if $u \in[0,1]$, to $(0, v)$ if $u \leq 0$ and to $(1, v)$ if $u \geq 1$,
(2) the map $([0,1] \times \mathbb{Z}) \cup(\{0,1\} \times \mathbb{R}) \rightarrow F$ sending (u, v) to itself if $v \in[0,1]$, to $(u, 0)$ if $v \leq 0$ and to $(u, 1)$ if $v \geq 1$.

In other words if r is the composite of the first map followed by the second, why is $r \mid F$ the identity? The drawings in the file exercises4as15.pdf might be helpful.
(d) Use the CHP to show that if the image of Δ represents the trivial element of the group $\pi_{1}\left(S^{1} \vee S^{1},(1,1)\right)$, then Δ also represents the trivial element in $\pi_{1}(\Gamma,(0,0))$.
(e) Why does the image of Δ in $\pi_{1}\left(S^{1} \vee S^{1},(1,1)\right)$ represent the monomial

$$
\left[\theta_{1}\right]\left[\theta_{2}\right]\left[\theta_{1}\right]^{-1}\left[\theta_{2}\right]^{-1}
$$

and why does this imply that the fundamental group of the wedge is nonabelian?
(f) Explain why the image of Δ in $\pi_{1}\left(S^{1} \times S^{1},(1,1)\right)$ is trivial.

