
EXERCISES FOR MATHEMATICS 145B

SPRING 2015 — Part 4

The remarks at the beginning of Part 1 also apply here. The references denote sections of the
texts for the course (Munkres and Crossley).

IV. Homotopy groups

IV.1 : Pointed spaces

(Munkres, § 51; Crossley, §§ 8.1–8.2, 8.5)

Additional exercises

1. (a) If (X,x) is a pointed space and A ⊂ X, can we find a base point a for A such that the
inclusion (A, a) → (X,x) is a base point preserving map? Give reasons for your answer.

(b) If (A, a) is a pointed space and A ⊂ X, why is it always possible to find a base point for
X such that the inclusion map from A to X is base point preserving?

2. (a) Let (X,x) and (Y, y) be pointed spaces, and make X × Y into a pointed space by taking
the base point to be (x, y). As usual let pX and pY denote the coordinate projections onto X and
Y respectively. Prove that if (W,w) is a pointed space, then a continuous mapping f : W → X ×Y

is base point preserving if and only if pX
of and PY

of are.

(b) Suppose that we are given the setting of (a), and assume that the sets {x} and {y} are
closed in X and Y respectively. Define the wedge or one point union (X,x) ∨ (Y, y) to be the
subspace

X ∨ Y = X × {y} ∪ {x} × Y ⊂ X × Y

with base point (x, y) as before. Prove that the pointed space (X ∨ Y, (x, y)) has the following
universal mapping property: If (Z, z) is a pointed space and f : (X,x) → (Z, z) and g : (Y, y) →
(Z, z) are base point preserving maps, then there is a unique continuous base point preserving
map h : (X ∨ Y, (x, y)) → (Z, z) such that the restrictions of h to (X,x) and (Y, y) are f and g

respectively.

3. A continuous mapping i : A → X is said to be a retract if there is a continuous mapping
r : X → A such that r oi is the identity on A.

(a) Prove that the mapping i is 1–1 and the mapping r is onto.

(b) If X is Hausdorff, prove that i is a closed mapping (and hence the topology on A is the
subspace topology).

(c) If a ∈ A is a base point, show that there is a base point for X such that both i and r are
base point preserving maps.

(d) Suppose that i : A → X is a retract and Y is an arbitrary space. Let f, g : Y → A be
continuous mappings. Prove that if i of ' i og, then f ' g. [Hint: What happens if we compose
with r?]
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4. (a) Let P be the one point space {q}, and take q to be its base point (in fact, there is only
one possible choice). Given a pointed space (X,x), explain why there are unique continuous base
point preserving mappings (P, q) → (X,x) and (X,x) → (P, q).

(b) Suppose that (N,n) is a pointed space such that for each pointed space (X,x) there are
unique continuous base point preserving mappings (N,n) → (X,x) and (X,x) → (N,n). Prove
that N consists of a single point. [Hint: The hypotheses imply that there is a unique continuous
base point preserving mapping from (N,n) to itself. Why is this the identity mapping, and what
does this imply about the composites (N,n) → (P, q) → (N,n) and (P, q) → (N,n) → (P, q)?]

IV.2 : Algebraic Structure

(Munkres, § 52; Crossley, §§ 8.1–8.3)

Additional exercises

1. (a) Let X be a topological space, and suppose that α and β are continuous curves in X such
that α(0) = β(0) = x0 and α(1) = β(1) = x1. Prove that α is endpoint preservingly homotopic to
β if and only if α + (−β) is base point preservingly homotopic to a constant curve. Why is this
also equivalent to the condition that β + (−α) is homotopic to a constant curve?

(b) Let X be an arcwise connected space. Prove that the following are equivalent:

For every p, q ∈ X, all continuous curves joining p to q are endpoint preservingly homo-
topic.

For every x ∈ X, all continuous closed curves based at x are base point preservingly
homotopic.

A space satisfying either (hence both) of these conditions is said to be simply connected.

2. If K is a nonempty convex subset of R
n, explain why K is simply connected.

3. Suppose that (X,x) is a Hausdorff space, let x ∈ A ⊂ X, and suppose that the inclusion
map i : (A, x) → (X,x) is a retract with one-sided inverse r : (X,x) → (A, x). Prove the induced
map of fundamental groups i∗ is 1–1, and also prove that every element of π1(X,x) has a unique
factorization of the form i∗(u) · v, where u ∈ π1(X,x) and v lies in the kernel of r∗.

WARNING. (i∗(u1) · v1) · (i∗(u2) · v2) is necessarily not equal to i∗(u1u2) · v1v2.

IV.3 : Simple cases

(Munkres, § 54; Crossley, §§ 6.3, 8.3)

Munkres, § 52, pp. 334–335: 1b, 5, 7

Additional exercises

1. Let f : (S1, 1) → (S1, 1) be a continuous mapping which is not onto. Prove that f represents
the trivial element of π1(S

1, 1). [Hint: Let g : [0, 1] → R be the unique lifting such that g(0) = 0;
more precisely, we have f(cos 2π t, sin 2π t) = (cos 2π g(t), sin 2π g(t))). Why is f onto if g(1) 6= 0?
Explain why if g(1) 6= 0 then the image of g contains either [−1, 0] or [0, 1].]
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2. Identify the space of n × n matrices over the complex numbers with C
n2

= R
2n2

, and let
GL(n, C) denote the group of invertible n × n matrices over the complex numbers. Let j : S 1 →
GL(n, C) denote the homomorphism which sends z ∈ S1 to the diagonal matrix whose upper left
entry is z and whose remaining diagonal entries are ones. Prove that j induces a 1–1 mapping
of fundamental groups. [Hint: If ∆ : GL(n, C) → C − {0} is the determinant map, why is ∆
continuous and why is ∆ oj a homotopy equivalence?]

IV.4 : Change of base point

(Munkres, § 52)

Munkres, § 54, pp. 334–335: 6

Additional exercises

1. Compute the fundamental group of (R2 − S1, z) for all choices of z ∈ R
2 − S1.

2. Let G be an arcwise connected topological group with identity element 1, and let g ∈ G.
Why do all continuous paths from 1 to g induce the same isomorphism from π1(G, 1) to π1(G, g)?

Definitions. Let p : E → B be a continuous mapping. The p is said to have the Path Lifting

Property (PLP) if the first statement below is true, and p is said to have the Covering Homotopy

Property (CHP) if the second statemnt below is true:

(PLP) Let b0 ∈ B, and assume that p(e0) = b0. Then a continuous path f : [0, 1] → B

beginning at b0 has a unique lifting to a continuous path f : [0, 1] → E beginning at e0.

(CHP) Let b0 and e0 be as above, and assume that h : [0, 1]×[0, 1] → B is continuous with

h(0, 0) = b0. Then there is a unique lifting of h to a continuous map H : [0, 1]× [0, 1] → E

such that H(0, 0) = e0.

The results of Section III.3 in the course imply that the map p : R → S1 given by p(t) =
exp(2π i t) has both of these properties.

3. (a) Prove that if p has the Path Lifting Property and B is arcwise connected, then p is onto.

(b) Prove that if p has the Covering Homotopy Property, then p also has the Path Lifting
Property. [Hint: Consider the homotopy H(s, t) = γ(s).]

4. (Compare Munkres, Theorems 53.2 and 53.3.) (a) Prove that if p : E → B and p′ : E′ → B′

satisfy the PLP and CHP, then so does p × p′ : E × E′ → B × B′.

(b) Suppose that p : E → B satisfies the PLP and CHP and B0 is a subspace of B. If
E0 = p−1[B0], then the map p0 : E0 → B0 obtained by restricting p also satisfies the PLP and
CHP.

5. The purpose of this exercise is to prove the existence of a (pointed) space (X,x) such that
π1(X,x) is not abelian.

(a) Suppose that (X,x) = (S1∨S1, (1, 1)) as in Exercise IV.1.2, so that X is a union of the two
circles S1 × {1} and {1} × S1 which have a single point in common. Using the preceding exercise,
prove that the restriction of p×p : R×R → S1 ×S1 to the inverse image of X defines a continuous
mapping

q : Γ = (R × Z) ∪ (Z × R) −→ X
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which satisfies the PLP and CHP (see exercises4as15.pdf for a drawing of Γ, which is a union
of vertical and horizontal lines).

(b) For j = 0, 1 let ij : (S1, 1) → (S1, 1) × (S1, 1) denote the base point preserving slice
inclusion into the jth factor, and let θ : [0, 1] → S1 be the usual counterclockwise parametrization
θ(t) = exp(2π i t), and define θj to be the composite ij oθ. Explain why the unique lifting ∆ of the
iterated concatenation (θ1 + θ2) + ((−θ1) + (−θ2)) is the usual counterclockwise parametrization
for the boundary F of the unit square; namely, (α1 +β2)++((−α2)+ (−β1)), where α1(t) = (t, 0),
α2(t) = (t, 1), β1(t) = (0, t) and β2(t) = (1, t). You do not need to give a detailed argument.

(c) Show that the parametrization for the boundary F of the unit square in (b) defines a
homeomorphism from S1 to F .

(d) Show that the closed curve ∆ is not homotopic to the trivial element of π1(Γ, (0, 0)) as
follows: First, explain why (c) implies that ∆ does not represent the trivial element of π1(F, (0, 0)).
Next, prove that F is a retract of Γ by considering the composite of

(1) the map Γ → ([0, 1]×Z)∪ ({0, 1}×R) sending (u, v) to itself if u ∈ [0, 1], to (0, v) if u ≤ 0
and to (1, v) if u ≥ 1,

(2) the map ([0, 1]×Z)∪ ({0, 1}×R) → F sending (u, v) to itself if v ∈ [0, 1], to (u, 0) if v ≤ 0
and to (u, 1) if v ≥ 1.

In other words if r is the composite of the first map followed by the second, why is r|F the identity?
The drawings in the file exercises4as15.pdf might be helpful.

(d) Use the CHP to show that if the image of ∆ represents the trivial element of the group
π1(S

1 ∨ S1, (1, 1)), then ∆ also represents the trivial element in π1(Γ, (0, 0)).

(e) Why does the image of ∆ in π1(S
1 ∨ S1, (1, 1)) represent the monomial

[θ1] [θ2] [θ1]
−1 [θ2]

−1

and why does this imply that the fundamental group of the wedge is nonabelian?

(f) Explain why the image of ∆ in π1(S
1 × S1, (1, 1)) is trivial.
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