UPDATED GENERAL INFORMATION - APRIL 7, 2017

Office hours

These will be Mondays from 2:30 to 3:30 and by appointment when necessary; it is probably best to contact me by electronic mail or in person before or after class to set up other times.

Intersections of nested intervals

Here is a more precise statement of the result mentioned in the lectures:

THEOREM. Suppose that we are given a sequence of closed intervals $\left\{J_{k}=\left[a_{k}, b_{k}\right]\right\}$ such that for each k we have $J_{k+1} \subset J_{k}$, so that

$$
a_{k} \leq a_{k+1} \leq b_{k+1} \leq b_{k}
$$

for all k. Then the intersection $\cap_{k} J_{k}$ is equal to the interval $\left[a^{*}, b^{*}\right]$, where $a^{*}=$ L.U.B. $\left\{a_{k}\right\}=$ $\lim _{k \rightarrow \infty} a_{k}$ and $b^{*}=$ G.L.B. $\left\{b_{k}\right\}=\lim _{k \rightarrow \infty} b_{k}$.

The hypotheses ensure that $a^{*} \leq b^{*}$. If equality holds, then $\left[a^{*}, b^{*}\right]$ is meant to denote the one point set whose only member is $a^{*}=b^{*}$.

