UPDATED GENERAL INFORMATION — APRIL 7, 2017

Office hours

These will be Mondays from 2:30 to 3:30 and by appointment when necessary; it is probably best to contact me by electronic mail or in person before or after class to set up other times.

Intersections of nested intervals

Here is a more precise statement of the result mentioned in the lectures:

THEOREM. Suppose that we are given a sequence of closed intervals $\{J_k = [a_k, b_k]\}$ such that for each k we have $J_{k+1} \subset J_k$, so that

$$a_k \leq a_{k+1} \leq b_{k+1} \leq b_k$$

for all k. Then the intersection $\cap_k J_k$ is equal to the interval $[a^*, b^*]$, where $a^* = \text{L.U.B.}\{a_k\} = \lim_{k \to \infty} a_k$ and $b^* = \text{G.L.B.}\{b_k\} = \lim_{k \to \infty} b_k$.

The hypotheses ensure that $a^* \leq b^*$. If equality holds, then $[a^*, b^*]$ is meant to denote the one point set whose only member is $a^* = b^*$.