Comments on the Brouwer Fixed Point Theorem

We shall give a complete and rigorous proof of a key step in the proof of the Brouwer Fixed Point Theorem that is often treated only in an intuitive manner. Everything will be stated in terms of the 2-dimensional disk D^2 and its boundary S^1 , but the entire argument extends to cover disks and spheres of higher dimensions.

The retraction in Brouwer's Theorem

The idea which appears in most books is straightforward. If we have a continuous mapping $f: D^2 \to D^2$ with no fixed points, then $f(\mathbf{x}) \neq \mathbf{x}$ for all \mathbf{x} , and hence it is meaningful to discuss the ray starting with $f(\mathbf{x})$ which passes through \mathbf{x} . Simple pictures strongly suggest that there is a unique point $r(\mathbf{x})$ on this ray which lies on the boundary circle and that this point depends continuously on \mathbf{x} . If \mathbf{x} already lies on the circle, then this point is \mathbf{x} itself, so we have a continuous mapping $r: D^2 \to S^1$ such that $r|S^1$ is the identity. One then derives a contradiction using the fact that S^1 and D^2 are not homotopy equivalent.

Of course, it is absolutely necessary to prove that one actually obtains a continuous mapping r with the indicated properties. We shall take a more general approach, starting with two distinct points \mathbf{x} and \mathbf{y} on the disk D^n and considering the ray starting with \mathbf{y} and passing through \mathbf{x} ; algebraically, this is the set of all points expressible as $\mathbf{y} + (1-t)\mathbf{x}$, where $t \ge 0$. As before, simple pictures strongly suggest that

- (1) there is a unique scalar $t \ge 1$ such that $\mathbf{y} + (1-t)\mathbf{x}$ lies on S^{n-1} ,
- (2) if $\mathbf{x} \in S^{n-1}$ then t = 1 so that the point is equal to \mathbf{x} , and
- (3) the value of t is a continuous function of (\mathbf{x}, \mathbf{y}) .

Our purpose here is to justify these assertions.

PROPOSITION. There is a continuous function $\rho : D^2 \times D^2$ – Diagonal $\rightarrow S^1$ such that $\rho(\mathbf{x}, \mathbf{y}) = \mathbf{x}$ if $\mathbf{x} \in S^1$.

If we have the mapping ρ and f is a continuous map from D^2 to itself without fixed points, then the retraction from D^2 onto S^1 is given by $\rho(\mathbf{x}, f(\mathbf{x}))$.

Proof of the proposition. It follows immediately that the intersection points of the line joining \mathbf{y} to \mathbf{x} are give by the values of t which are roots of the equation

$$|\mathbf{y} + t(\mathbf{x} - \mathbf{y})|^2 = 1$$

and the desired points on the ray are given by the roots for which t > 1. We need to show that there is always a unique root satisfying this condition, and that this root depends continuously on \mathbf{x} and \mathbf{y} .

We can rewrite the displayed equation as

$$|\mathbf{x} - \mathbf{y}|^2 t^2 + 2 \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle t + (|\mathbf{y}|^2 - 1) = 0$$
.

If try to solve this nontrivial quadratic equation for t using the quadratic formula, then we obtain the following:

$$t = \frac{-\langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \pm \sqrt{\langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle^2 + |\mathbf{x} - \mathbf{y}|^2 \cdot (1 - |\mathbf{y}|^2)}}{|\mathbf{x} - \mathbf{y}|^2}$$

One could try to analyze these roots by brute force, but it will be more pleasant to take a more qualitative viewpoint.

(a) There are always two distinct real roots. We need to show that the expression inside the square root sign is always a positive real number. Since $|\mathbf{y}| \leq 1$, the expression is clearly nonnegative, so we need only eliminate the possibility that it might be zero. If this happens, then each summand must be zero, and since $|\mathbf{y} - \mathbf{x}| > 0$ it follows that we must have both $\langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = 0$ and $1 - |\mathbf{y}|^2 = 0$. The second of these implies $|\mathbf{y}| = 1$, and the first then implies

$$\langle \mathbf{y}, \mathbf{x} \rangle = |\mathbf{y}|^2 = 1$$
.

If we combine this with the Cauchy-Schwarz Inequality and the basic condition $|\mathbf{x}| \leq 1$, we see that $|\mathbf{x}|$ must equal 1 and \mathbf{x} must be a positive multiple of \mathbf{y} ; these in turn imply that $\mathbf{x} = \mathbf{y}$, which contradicts our hypothesis that $\mathbf{x} \neq \mathbf{y}$. Thus the expression inside the radical sign is positive and hence there are two distinct real roots.

(b) There are no roots t such that 0 < t < 1. The Triangle Inequality implies that

$$|\mathbf{y} + t(\mathbf{x} - \mathbf{y})| = |(1 - t)\mathbf{y} + t\mathbf{x}| \le (1 - t)|\mathbf{y}| + t|\mathbf{x}| \le 1$$

so the value of the quadratic function

$$q(t) = |\mathbf{x} - \mathbf{y}|^2 t^2 + 2\langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle t + (|\mathbf{y}|^2 - 1)$$

lies in [-1,0] if 0 < t < 1. Suppose that the value is zero for some t_0 of this type. Since there are two distinct roots for the associated quadratic polynomial, it follows that the latter does not take a maximum value at t_0 , and hence there is some t_1 such that $0 < t_1 < 1$ and the value of the function at t_1 is positive. This contradicts our observation about the behavior of the function, and therefore our hypothesis about the existence of a root like t_0 must be false.

(d) There is one root of q(t) such that $t \leq 0$ and a second root such that $t \geq 1$. We know that $q(0) \leq 0$ and that the limit of q(t) as $t \to -\infty$ is equal to $+\infty$. By continuity there must be some $t_1 \leq 0$ such that $q(t_1) = 0$. Similarly, we know that $q(1) \leq 0$ and that the limit of q(t) as $t \to +\infty$ is equal to $+\infty$, so again by continuity there must be some $t_2 \geq 1$ such that $q(t_2) = 0$.

(d) The unique root t satisfying $t \ge 1$ is a continuous function of **x** and **y**. This is true because the desired root is given by taking the positive sign in the expression obtained from the quadratic formula, and it is a routine algebraic exercise to check that this expression is a continuous function of (\mathbf{x}, \mathbf{y}) .

(e) If $|\mathbf{x}| = 1$, then t = 1. This just follows because $|\mathbf{y} + 1(\mathbf{x} - \mathbf{y})| = 1$ in this case.

The proposition now follows by taking

$$\rho(\mathbf{x}, \mathbf{y}) = \mathbf{y} + t(\mathbf{x} - \mathbf{y})$$

where t is given as above by taking the positive sign in the quadratic formula. The final property shows that $\rho(\mathbf{x}, \mathbf{y}) = \mathbf{x}$ if $|\mathbf{x}| = 1$.