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Comments on the Brouwer Fixed Point Theorem

We shall give a complete and rigorous proof of a key step in the proof of the Brouwer Fixed
Point Theorem that is often treated only in an intuitive manner. Everything will be stated in terms
of the 2-dimensional disk D2 and its boundary S1, but the entire argument extends to cover disks
and spheres of higher dimensions.

The retraction in Brouwer’s Theorem

The idea which appears in most books is straightforward. If we have a continuous mapping
f : D2 → D2 with no fixed points, then f(x) 6= x for all x, and hence it is meaningful to discuss
the ray starting with f(x) which passes through x. Simple pictures strongly suggest that there
is a unique point r(x) on this ray which lies on the boundary circle and that this point depends
continuously on x. If x already lies on the circle, then this point is x itself, so we have a continuous
mapping r : D2 → S1 such that r|S1 is the identity. One then derives a contradiction using the
fact that S1 and D2 are not homotopy equivalent.

Of course, it is absolutely necessary to prove that one actually obtains a continuous mapping
r with the indicated properties. We shall take a more general approach, starting with two distinct
points x and y on the disk Dn and considering the ray starting with y and passing through x;
algebraically, this is the set of all points expressible as y + (1− t)x, where t ≥ 0. As before, simple
pictures strongly suggest that

(1) there is a unique scalar t ≥ 1 such that y + (1 − t)x lies on Sn−1,

(2) if x ∈ Sn−1 then t = 1 so that the point is equal to x, and

(3) the value of t is a continuous function of (x,y).

Our purpose here is to justify these assertions.

PROPOSITION. There is a continuous function ρ : D2 × D2 − Diagonal → S1 such that

ρ(x,y) = x if x ∈ S1.

If we have the mapping ρ and f is a continuous map from D2 to itself without fixed points,
then the retraction from D2 onto S1 is given by ρ(x, f(x) ).

Proof of the proposition. It follows immediately that the intersection points of the line joining
y to x are give by the values of t which are roots of the equation

|y + t(x− y)|2 = 1

and the desired points on the ray are given by the roots for which t > 1. We need to show that
there is always a unique root satisfying this condition, and that this root depends continuously on
x andn y.

We can rewrite the displayed equation as

|x− y|2t2 + 2〈y,x − y〉t + (|y|2 − 1) = 0 .



If try to solve this nontrivial quadratic equation for t using the quadratic formula, then we obtain
the following:

t =
−〈y,x − y〉 ±

√

〈y,x − y〉2 + |x− y|2 · (1 − |y|2)

|x− y|2

One could try to analyze these roots by brute force, but it will be more pleasant to take a more
qualitative viewpoint.

(a) There are always two distinct real roots. We need to show that the expression inside
the square root sign is always a positive real number. Since |y| ≤ 1, the expression is clearly
nonnegative, so we need only eliminate the possibility that it might be zero. If this happens, then
each summand must be zero, and since |y−x| > 0 it follows that we must have both 〈y,x−y〉 = 0
and 1 − |y|2 = 0. The second of these implies |y| = 1, and the first then implies

〈y,x〉 = |y|2 = 1 .

If we combine this with the Cauchy-Schwarz Inequality and the basic condition |x| ≤ 1, we see that
|x| must equal 1 and x must be a positive multiple of y; these in turn imply that x = y, which
contradicts our hypothesis that x 6= y. Thus the expression inside the radical sign is positive and
hence there are two distinct real roots.

(b) There are no roots t such that 0 < t < 1. The Triangle Inequality implies that

|y + t(x− y)| = |(1 − t)y + tx| ≤ (1 − t)|y| + t|x| ≤ 1

so the value of the quadratic function

q(t) = |x − y|2t2 + 2〈y,x − y〉t + (|y|2 − 1)

lies in [−1, 0] if 0 < t < 1. Suppose that the value is zero for some t0 of this type. Since there
are two distinct roots for the associated quadratic polynomial, it follows that the latter does not
take a maximum value at t0, and hence there is some t1 such that 0 < t1 < 1 and the value of the
function at t1 is positive. This contradicts our observation about the behavior of the function, and
therefore our hypothesis about the existence of a root like t0 must be false.

(d) There is one root of q(t) such that t ≤ 0 and a second root such that t ≥ 1. We know
that q(0) ≤ 0 and that the limit of q(t) as t → −∞ is equal to +∞. By continuity there must be
some t1 ≤ 0 such that q(t1) = 0. Similarly, we know that q(1) ≤ 0 and that the limit of q(t) as
t → +∞ is equal to +∞, so again by continuity there must be some t2 ≥ 1 such that q(t2) = 0.

(d) The unique root t satisfying t ≥ 1 is a continuous function of x and y. This is true
because the desired root is given by taking the positive sign in the expression obtained from the
quadratic formula, and it is a routine algebraic exercise to check that this expression is a continuous
function of (x,y).

(e) If |x| = 1, then t = 1. This just follows because |y + 1(x − y)| = 1 in this case.

The proposition now follows by taking

ρ(x,y) = y + t(x − y)

where t is given as above by taking the positive sign in the quadratic formula. The final property
shows that ρ(x,y) = x if |x| = 1.


