Mathematics 145B, Spring 2017, Examination 2

Answer Key

1. [25 points] Let X be a topological space which is a union of two connected subsets A and B. Show that X has at most two connected components, and give a pair of examples where the numbers of components are 1 and 2 respectively.

SOLUTION

Every connected subset of X is contained in a connected component of X, so let C and D be the components containing A and B respectively. Then $C \cup D \subset X \subset A \cup B \subset C \cup D$ implies that $X=C \cup D$. Since two connected components are either disjoint or identical, we have that either $C=D$ and X is connected or else $C \neq D$, and X is the union of the two disjoint connected components C and $D . ■$

An example where X is connected is given by $[0,2]=[0,1] \cup[1,2]$, and an example where X is not connected is given by $\{0,1\}$; clearly there are also many other examples of both types.
2. [15 points] Let \mathcal{R} be the equivalence relation on the closed interval $[-1,1]$ whose equivalence classes are the sets P, N, Z of the positive elements, the negative elements, and $\{0\}$ respectively. If X is the quotient space $[-1,1] / \mathcal{R}$ with the quotient topology, determine all points A in X such that $\{A\}$ is (i) open but not closed, (ii) closed but not open, (iii) both open and closed, (iv) neither open nor closed. - Note that since X has three points and there are four mutually disjoint categories, at least one of these categories will not contain any points at all.

SOLUTION

The singletons $\{P\}$ and $\{N\}$ are both open subsets because their inverse images are open subsets of the closed interval $[-1,1]$; namely, $(0,1]$ and $[-1,0)$ respectively. Neither is a closed subset because these half-open intervals are not closed subsets of $[-1,1]$.

The singleton $\{Z\}$ is a closed subset because its inverse image is the closed subset $\{0\}$. It is not an open subset because $\{0\}$ is not an open subset of $[-1,1]$.

To summarize, the first two singletons $\{P\}$ and $\{N\}$ satisfy (i), the zero singleton $\{Z\}$ satisfies (ii), and no singletons satisfy (iii) or (iv)..
3. [10 points] Let $f: X \rightarrow Y$ be a continuous mapping of topological spaces. State the defining condition for f to be a homotopy equivalence.

SOLUTION

The condition is that there is a continuous mapping $g: Y \rightarrow X$ such that $g \circ f$ is homotopic to id_{X} and $f{ }^{\circ} g$ is homotopic to $\mathrm{id}_{Y} \cdot \square$

