Problems from Munkres for Mathematics 145B—I

Recommended exercises from Sutherland are also listed.

S.14. Sequentially compact metric spaces

Sutherland, 14.15, 14.17(c).

I. Complete metric spaces

Sutherland, 17.2–3, 17.8, 17.10, 17.16.

(Munkres, § 43, pp. 270–271: 1, 4, 6c)

1. Let X be a metric space.

(a) Suppose that for some $\varepsilon > 0$, every ε -ball in X has compact closure. Show that X is complete.

(b) Suppose that for each $x \in X$ there is some $\varepsilon > 0$ such that the disk $N_{\varepsilon}(x)$ has compact closure. Show by means of an example that X need not be complete. [*Hint:* What happens if we take a nonempty proper subset of \mathbb{R}^2 ?]

4. Show that the metric space (X, d) is complete if and only if for every (nonempty) nested sequence $A_1 \supset A_2 \supset \cdots$ of nonempty closed sets of X such that diam $A_n \to 0$, then the intersection of the sets A_n is nonempty.

6. A space X is said to be topologically complete if there exists a metric for the topology of X relative to which X is complete.

(c) Show that an open subspace of a topologically complete space is topologically complete. [Hint: If $U \subset X$ and X is complete under the metric d, define $\phi : U \to \mathbb{R}$ by the formula 1/d(x, XU) and embed U in $X \times \mathbb{R}$ by taking the graph of ϕ .]

II. Constructing and deconstructing spaces

Sutherland, 15.4 — only the first part.

If you have not seen a physical demonstration of the result in this exercise, it is worthwhile carrying out the construction using a strip of paper, a piece of adhesive tape, and a scissors. After making a Möbius strip by taping the ends together in the proper way, mark off the circle in the middle of the strip, cut along this line, and see what happens. (Munkres, § 22, pp. 144–145)

4. (a) Define an equivalence relation on the plane $X = \mathbb{R}^2$ as follows:

$$(x_0, y_0) \sim (x_1, y_1) \qquad \Leftrightarrow \qquad x_0 + y_0^2 = x_1 + y_1^2$$

Let X^* be the corresponding quotient space. It is homeomorphic to a familiar space; what is it? [*Hint:* Set $g(x, y) = x + y^2$.]

(b) Repeat (a) for the equivalence relation

$$(x_0, y_0) \sim (x_1, y_1) \iff x_0^2 + y_0^2 = x_1^2 + y_1^2.$$

III. Homotopy

III.1: Homotopic mappings

Munkres, § 51, p. 330

1. Show that if $h, h' : X \to Y$ are homotopic and $k, k' : Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h' : X \to Z$ are homotopic.

2. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps from X into Y.

(a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.

- (b) Show that if Y is path connected, the set [I, Y] has a single element.
- **3.** A space X is said to be *contractible* if the identity map $id_X : X \to X$ is nullhomotopic.
 - (a) Show that I and \mathbb{R} are contractible.
 - (b) Show that a contractible space is path connected.
 - (c) Show that if Y is contractible, then for all X, the set [X, Y] has a single element.
 - (d) Show that if X is contractible and Y is path connected, then [X, Y] has a single element.

III.2: Homotopy equivalence

Munkres, § 58, pp. 366–367

1. Show that if A is a deformation retract of X, and B is a deformation retract of A, then B is a deformation retract of X.

3. Show that, given a collection C of spaces, the relation of homotopy equivalence is an equivalence relation on C.

6. Show that a retract of a contractible space is contractible.