Problems from Munkres for Mathematics 145B—II

IV. Homotopy groups

Munkres, § 52, pp. 334–335: : 1b, 5, 6, 7

1. 1. A subset $A \subset \mathbb{R}^n$ is said to be *star convex* if for some point a_0 of A, all the line segments joining a_0 to other points of A lie in A.

- (a) Find a star convex set that is not convex.
- (b) Show that if A is star convex, then A is simply connected.

5. 5. Let A be a subspace of \mathbb{R}^k , and let $h : (A, a_0) \to (Y, y_0)$ be a continuous function. Show that if h is extendable to a continuous map of \mathbb{R}^k into Y, then h_* is the trivial homomorphism (= the homomorphism that maps everything to the identity element).

6. Show that if X is path connected, the homomorphism induced by a continuous map is independent of base point, up to isomorphisms of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\beta^{\circ} (h_{x_0})_* = (h_{x_1})_* \,^{\circ} \widehat{\alpha} \; .$$

This equation expresses the fact that the following diagram of maps "commutes" (the composites along two paths with the same beginnings and ends are equal):

7. Let G be a topological group with operation • and identity element x_0 . Let $\Omega(G, x_0)$ denote the set of all loops in G based at x_0 . If $f, g \in \Omega(G, x_0)$, let us define a loop $f \otimes g$ by the rule

$$(f \otimes g)(s) = f(s) \bullet g(s)$$
.

(a) Show that this operation makes the set $\Omega(G, x_0)$ into a group.

(b) Show that this operation induces a group operation \otimes on $\pi_1(G, x_0)$.

(c) Show that the two group operations \otimes and \oplus (= concatenation) on $\pi_1(G, x_0)$ are the same. [*Hint:* Compute $(f \oplus e_{x_0}) \otimes (e_{x_0} \oplus g)$.]

(d) Show that $\pi_1(G, x_0)$ is abelian.