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13. Compact spaces

1. Let X and Y be compact Hausdorff spaces, and let f : X → Y be a function which is not
assumed to be continuous. Prove that f is continuous if and only if its graph (all (x, y) ∈ X × Y
such that y = f(x)) is a closed subset of X × Y .

2. Suppose that X is a metric space and p is a limit point of X. Prove that there is a
continuous real valued function on X −{p} which does not take a maximum value. [Hint: Explain
why the function f(x) = d(x, p) takes values arbitrarily close to zero.]

3. (i) Let X be a metric space, let A ⊂ X be compact, and let B ⊂ X be a closed subset
of X which is disjoint from A. If dB(a) is the distance function d(a,B), prove that dB takes a
minimum value which is positive.

(ii) Give an example for X = R
2 (with the usual Euclidean metric) such that A is a closed

subset and the conclusion in (i) is not true. [Hint: Consider the hyperbola defined by y = 1/x
and one of its asymptotes.]

4. Suppose that X is a Hausdorff space and A ⊂ X is a subspace whose closure in X is
compact. Prove that the set L(A) of limit points for A is also compact. [Hint: Why do we know
that L(A) is closed in X?]

14. Sequential compactness

1. A topological space X is said to be limit point compact if and only if every infinite subset
of X has a limit point.

(i) If (X, d) is a metric space, prove that X is sequentially compact if and only if it is limit
point compact.

(ii) If X is a compact topological space, prove that X is limit point compact. [Hint: Assume
the contrary, and let S be an infinite set with no limit points. Why is every subset of S closed?
Take an infinite sequence of distinct points xk ∈ S, let T = {x1, x2, etc.}, and set Tn equal to
T = {xn, xn+1, etc.}. Then each Tn is nonempty and Tn ⊃ Tn+1 for all n, but ∩n Tn = ∅.]

Note. The converse to (ii) is false, and two counterexamples are given on page 179 of Munkres,
Topology . The first of these is one of the simplest to describe.

2. A family E of continuous real valued functions on a metric space (X, d) is said to be
equicontinuous if for each ε > 0 there is some δ > 0 such that d(s, t) < δ implies |f(s) − f(t)| < ε
for every function f ∈ E. The Arzelà-Ascoli Theorem (see Goffman and Pedrick, First Course in

1



Functional Analysis, pp. 28–30, or Rudin, Principles of Mathematical Analysis, Third Edition, p.
158) implies that a subset E in the normed vector space C[0, 1] of continuous functions from [0, 1]
to R has a sequentially compact closure if and only if it is bounded and equicontinuous. — If
A,B > 0 and D(A,B) is the family in the normed vector space C[0, 1] consisting of all continuously
differentiable functions f such that |f(t)| ≥ A and |f ′(t)| ≤ B for all t ∈ [0, 1], show that D(A,B)
is equicontinuous, and hence it has a sequentially compact closure by the Arzelà-Ascoli Theorem.
[Hint: Use the Mean Value Theorem to show that |f(s) − f(t)| ≤ B · |s − t| for all s, t ∈ [0, 1];
without loss of generality, we might as well assume that s < t.]

Note. Other important examples of equicontinuous families are described in Section 2.15 of
Goffman and Pedrick (in particular, see pages 83 – 84).
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